ترغب بنشر مسار تعليمي؟ اضغط هنا

Hierarchical Bayesian inference of galaxy redshift distributions from photometric surveys

133   0   0.0 ( 0 )
 نشر من قبل Boris Leistedt
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Accurately characterizing the redshift distributions of galaxies is essential for analysing deep photometric surveys and testing cosmological models. We present a technique to simultaneously infer redshift distributions and individual redshifts from photometric galaxy catalogues. Our model constructs a piecewise constant representation (effectively a histogram) of the distribution of galaxy types and redshifts, the parameters of which are efficiently inferred from noisy photometric flux measurements. This approach can be seen as a generalization of template-fitting photometric redshift methods and relies on a library of spectral templates to relate the photometric fluxes of individual galaxies to their redshifts. We illustrate this technique on simulated galaxy survey data, and demonstrate that it delivers correct posterior distributions on the underlying type and redshift distributions, as well as on the individual types and redshifts of galaxies. We show that even with uninformative priors, large photometric errors and parameter degeneracies, the redshift and type distributions can be recovered robustly thanks to the hierarchical nature of the model, which is not possible with common photometric redshift estimation techniques. As a result, redshift uncertainties can be fully propagated in cosmological analyses for the first time, fulfilling an essential requirement for the current and future generations of surveys.



قيم البحث

اقرأ أيضاً

We present a large-scale Bayesian inference framework to constrain cosmological parameters using galaxy redshift surveys, via an application of the Alcock-Paczynski (AP) test. Our physical model of the non-linearly evolved density field, as probed by galaxy surveys, employs Lagrangian perturbation theory (LPT) to connect Gaussian initial conditions to the final density field, followed by a coordinate transformation to obtain the redshift space representation for comparison with data. We generate realizations of primordial and present-day matter fluctuations given a set of observations. This hierarchical approach encodes a novel AP test, extracting several orders of magnitude more information from the cosmological expansion compared to classical approaches, to infer cosmological parameters and jointly reconstruct the underlying 3D dark matter density field. The novelty of this AP test lies in constraining the comoving-redshift transformation to infer the appropriate cosmology which yields isotropic correlations of the galaxy density field, with the underlying assumption relying purely on the cosmological principle. Such an AP test does not rely explicitly on modelling the full statistics of the field. We verify in depth via simulations that this renders our test robust to model misspecification. This leads to another crucial advantage, namely that the cosmological parameters exhibit extremely weak dependence on the currently unresolved phenomenon of galaxy bias, thereby circumventing a potentially key limitation. This is consequently among the first methods to extract a large fraction of information from statistics other than that of direct density contrast correlations, without being sensitive to the amplitude of density fluctuations. We perform several statistical efficiency and consistency tests on a mock galaxy catalogue, using the SDSS-III survey as template.
Cosmological galaxy surveys aim at mapping the largest volumes to test models with techniques such as cluster abundance, cosmic shear correlations or baryon acoustic oscillations (BAO), which are designed to be independent of galaxy bias. Here we exp lore an alternative route to constrain cosmology: sampling more moderate volumes with the cross-correlation of photometric and spectroscopic surveys. We consider the angular galaxy-galaxy autocorrelation in narrow redshift bins and its combination with different probes of weak gravitational lensing (WL) and redshift space distortions (RSD). Including the cross-correlation of these surveys improves by factors of a few the constraints on both the dark energy equation of state w(z) and the cosmic growth history, parametrized by gamma. The additional information comes from using many narrow redshift bins and from galaxy bias, which is measured both with WL probes and RSD, breaking degeneracies that are present when using each method separately. We show forecasts for a joint w(z) and gamma figure of merit using linear scales over a deep (i<24) photometric survey and a brighter (i<22.5) spectroscopic or very accurate (0.3%) photometric redshift survey. Magnification or shear in the photometric sample produce FoM that are of the same order of magnitude of those of RSD or BAO over the spectroscopic sample. However, the cross-correlation of these probes over the same area yields a FoM that is up to a factor 100 times larger. Magnification alone, without shape measurements, can also be used for these cross-correlations and can produce better results than using shear alone. For a spectroscopic follow-up survey strategy, measuring the spectra of the foreground lenses to perform this cross-correlation provides 5 times better FoM than targeting the higher redshift tail of the galaxy distribution to study BAO over a 2.5 times larger volume.
Photometric galaxy surveys constitute a powerful cosmological probe but rely on the accurate characterization of their redshift distributions using only broadband imaging, and can be very sensitive to incomplete or biased priors used for redshift cal ibration. Sanchez & Bernstein (2019) presented a hierarchical Bayesian model which estimates those from the robust combination of prior information, photometry of single galaxies and the information contained in the galaxy clustering against a well-characterized tracer population. In this work, we extend the method so that it can be applied to real data, developing some necessary new extensions to it, especially in the treatment of galaxy clustering information, and we test it on realistic simulations. After marginalizing over the mapping between the clustering estimator and the actual density distribution of the sample galaxies, and using prior information from a small patch of the survey, we find the incorporation of clustering information with photo-$z$s to tighten the redshift posteriors, and to overcome biases in the prior that mimic those happening in spectroscopic samples. The method presented here uses all the information at hand to reduce prior biases and incompleteness. Even in cases where we artificially bias the spectroscopic sample to induce a shift in mean redshift of $Delta bar z approx 0.05,$ the final biases in the posterior are $Delta bar z lesssim0.003.$ This robustness to flaws in the redshift prior or training samples would constitute a milestone for the control of redshift systematic uncertainties in future weak lensing analyses.
Calibrating the photometric redshifts of >10^9 galaxies for upcoming weak lensing cosmology experiments is a major challenge for the astrophysics community. The path to obtaining the required spectroscopic redshifts for training and calibration is da unting, given the anticipated depths of the surveys and the difficulty in obtaining secure redshifts for some faint galaxy populations. Here we present an analysis of the problem based on the self-organizing map, a method of mapping the distribution of data in a high-dimensional space and projecting it onto a lower-dimensional representation. We apply this method to existing photometric data from the COSMOS survey selected to approximate the anticipated Euclid weak lensing sample, enabling us to robustly map the empirical distribution of galaxies in the multidimensional color space defined by the expected Euclid filters. Mapping this multicolor distribution lets us determine where - in galaxy color space - redshifts from current spectroscopic surveys exist and where they are systematically missing. Crucially, the method lets us determine whether a spectroscopic training sample is representative of the full photometric space occupied by the galaxies in a survey. We explore optimal sampling techniques and estimate the additional spectroscopy needed to map out the color-redshift relation, finding that sampling the galaxy distribution in color space in a systematic way can efficiently meet the calibration requirements. While the analysis presented here focuses on the Euclid survey, similar analysis can be applied to other surveys facing the same calibration challenge, such as DES, LSST, and WFIRST.
118 - Ravi K. Sheth 2007
The luminosity functions of galaxies and quasars provide invaluable information about galaxy and quasar formation. Estimating the luminosity function from magnitude limited samples is relatively straightforward, provided that the distances to the obj ects in the sample are known accurately; techniques for doing this have been available for about thirty years. However, distances are usually known accurately for only a small subset of the sample. This is true of the objects in the Sloan Digital Sky Survey, and will be increasingly true of the next generation of deep multi-color photometric surveys. Estimating the luminosity function when distances are only known approximately (e.g., photometric redshifts are available, but spectroscopic redshifts are not) is more difficult. I describe two algorithms which can handle this complication: one is a generalization of the V_max algorithm, and the other is a maximum likelihood approach. Because these methods account for uncertainties in the distance estimate, they impact a broader range of studies. For example, they are useful for studying the abundances of galaxies which are sufficiently nearby that the contribution of peculiar velocity to the spectroscopic redshift is not negligible, so only a noisy estimate of the true distance is available. In this respect, peculiar velocities and photometric redshift errors have similar effects. The methods developed here are also useful for estimating the stellar luminosity function in samples where accurate parallax distances are not available.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا