ترغب بنشر مسار تعليمي؟ اضغط هنا

PcDGAN: A Continuous Conditional Diverse Generative Adversarial Network For Inverse Design

61   0   0.0 ( 0 )
 نشر من قبل Amin Heyrani Nobari
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Engineering design tasks often require synthesizing new designs that meet desired performance requirements. The conventional design process, which requires iterative optimization and performance evaluation, is slow and dependent on initial designs. Past work has used conditional generative adversarial networks (cGANs) to enable direct design synthesis for given target performances. However, most existing cGANs are restricted to categorical conditions. Recent work on Continuous conditional GAN (CcGAN) tries to address this problem, but still faces two challenges: 1) it performs poorly on non-uniform performance distributions, and 2) the generated designs may not cover the entire design space. We propose a new model, named Performance Conditioned Diverse Generative Adversarial Network (PcDGAN), which introduces a singular vicinal loss combined with a Determinantal Point Processes (DPP) based loss function to enhance diversity. PcDGAN uses a new self-reinforcing score called the Lambert Log Exponential Transition Score (LLETS) for improved conditioning. Experiments on synthetic problems and a real-world airfoil design problem demonstrate that PcDGAN outperforms state-of-the-art GAN models and improves the conditioning likelihood by 69% in an airfoil generation task and up to 78% in synthetic conditional generation tasks and achieves greater design space coverage. The proposed method enables efficient design synthesis and design space exploration with applications ranging from CAD model generation to metamaterial selection.



قيم البحث

اقرأ أيضاً

Conditional Generative Adversarial Networks (cGANs) are generative models that can produce data samples ($x$) conditioned on both latent variables ($z$) and known auxiliary information ($c$). We propose the Bidirectional cGAN (BiCoGAN), which effecti vely disentangles $z$ and $c$ in the generation process and provides an encoder that learns inverse mappings from $x$ to both $z$ and $c$, trained jointly with the generator and the discriminator. We present crucial techniques for training BiCoGANs, which involve an extrinsic factor loss along with an associated dynamically-tuned importance weight. As compared to other encoder-based cGANs, BiCoGANs encode $c$ more accurately, and utilize $z$ and $c$ more effectively and in a more disentangled way to generate samples.
Conditional generative adversarial networks (cGAN) have led to large improvements in the task of conditional image generation, which lies at the heart of computer vision. The major focus so far has been on performance improvement, while there has bee n little effort in making cGAN more robust to noise. The regression (of the generator) might lead to arbitrarily large errors in the output, which makes cGAN unreliable for real-world applications. In this work, we introduce a novel conditional GAN model, called RoCGAN, which leverages structure in the target space of the model to address the issue. Our model augments the generator with an unsupervised pathway, which promotes the outputs of the generator to span the target manifold even in the presence of intense noise. We prove that RoCGAN share similar theoretical properties as GAN and experimentally verify that our model outperforms existing state-of-the-art cGAN architectures by a large margin in a variety of domains including images from natural scenes and faces.
Typical engineering design tasks require the effort to modify designs iteratively until they meet certain constraints, i.e., performance or attribute requirements. Past work has proposed ways to solve the inverse design problem, where desired designs are directly generated from specified requirements, thus avoid the trial and error process. Among those approaches, the conditional deep generative model shows great potential since 1) it works for complex high-dimensional designs and 2) it can generate multiple alternative designs given any condition. In this work, we propose a conditional deep generative model, Range-GAN, to achieve automatic design synthesis subject to range constraints. The proposed model addresses the sparse conditioning issue in data-driven inverse design problems by introducing a label-aware self-augmentation approach. We also propose a new uniformity loss to ensure generated designs evenly cover the given requirement range. Through a real-world example of constrained 3D shape generation, we show that the label-aware self-augmentation leads to an average improvement of 14% on the constraint satisfaction for generated 3D shapes, and the uniformity loss leads to a 125% average increase on the uniformity of generated shapes attributes. This work laid the foundation for data-driven inverse design problems where we consider range constraints and there are sparse regions in the condition space.
We present a method for improving human design of chairs. The goal of the method is generating enormous chair candidates in order to facilitate human designer by creating sketches and 3d models accordingly based on the generated chair design. It cons ists of an image synthesis module, which learns the underlying distribution of training dataset, a super-resolution module, which improve quality of generated image and human involvements. Finally, we manually pick one of the generated candidates to create a real life chair for illustration.
117 - Zhi Chen , Jiang Duan , Li Kang 2021
Anomaly detection has wide applications in machine intelligence but is still a difficult unsolved problem. Major challenges include the rarity of labeled anomalies and it is a class highly imbalanced problem. Traditional unsupervised anomaly detector s are suboptimal while supervised models can easily make biased predictions towards normal data. In this paper, we present a new supervised anomaly detector through introducing the novel Ensemble Active Learning Generative Adversarial Network (EAL-GAN). EAL-GAN is a conditional GAN having a unique one generator vs. multiple discriminators architecture where anomaly detection is implemented by an auxiliary classifier of the discriminator. In addition to using the conditional GAN to generate class balanced supplementary training data, an innovative ensemble learning loss function ensuring each discriminator makes up for the deficiencies of the others is designed to overcome the class imbalanced problem, and an active learning algorithm is introduced to significantly reduce the cost of labeling real-world data. We present extensive experimental results to demonstrate that the new anomaly detector consistently outperforms a variety of SOTA methods by significant margins. The codes are available on Github.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا