ترغب بنشر مسار تعليمي؟ اضغط هنا

On Learning to Rank Long Sequences with Contextual Bandits

79   0   0.0 ( 0 )
 نشر من قبل Anirban Santara
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by problems of learning to rank long item sequences, we introduce a variant of the cascading bandit model that considers flexible length sequences with varying rewards and losses. We formulate two generative models for this problem within the generalized linear setting, and design and analyze upper confidence algorithms for it. Our analysis delivers tight regret bounds which, when specialized to vanilla cascading bandits, results in sharper guarantees than previously available in the literature. We evaluate our algorithms on a number of real-world datasets, and show significantly improved empirical performance as compared to known cascading bandit baselines.

قيم البحث

اقرأ أيضاً

Ensemble models in E-commerce combine predictions from multiple sub-models for ranking and revenue improvement. Industrial ensemble models are typically deep neural networks, following the supervised learning paradigm to infer conversion rate given i nputs from sub-models. However, this process has the following two problems. Firstly, the point-wise scoring approach disregards the relationships between items and leads to homogeneous displayed results, while diversified display benefits user experience and revenue. Secondly, the learning paradigm focuses on the ranking metrics and does not directly optimize the revenue. In our work, we propose a new Learning-To-Ensemble (LTE) framework RAEGO, which replaces the ensemble model with a contextual Rank Aggregator (RA) and explores the best weights of sub-models by the Evaluator-Generator Optimization (EGO). To achieve the best online performance, we propose a new rank aggregation algorithm TournamentGreedy as a refinement of classic rank aggregators, which also produces the best average weighted Kendall Tau Distance (KTD) amongst all the considered algorithms with quadratic time complexity. Under the assumption that the best output list should be Pareto Optimal on the KTD metric for sub-models, we show that our RA algorithm has higher efficiency and coverage in exploring the optimal weights. Combined with the idea of Bayesian Optimization and gradient descent, we solve the online contextual Black-Box Optimization task that finds the optimal weights for sub-models given a chosen RA model. RA-EGO has been deployed in our online system and has improved the revenue significantly.
We study locally differentially private (LDP) bandits learning in this paper. First, we propose simple black-box reduction frameworks that can solve a large family of context-free bandits learning problems with LDP guarantee. Based on our frameworks, we can improve previous best results for private bandits learning with one-point feedback, such as private Bandits Convex Optimization, and obtain the first result for Bandits Convex Optimization (BCO) with multi-point feedback under LDP. LDP guarantee and black-box nature make our frameworks more attractive in real applications compared with previous specifically designed and relatively weaker differentially private (DP) context-free bandits algorithms. Further, we extend our $(varepsilon, delta)$-LDP algorithm to Generalized Linear Bandits, which enjoys a sub-linear regret $tilde{O}(T^{3/4}/varepsilon)$ and is conjectured to be nearly optimal. Note that given the existing $Omega(T)$ lower bound for DP contextual linear bandits (Shariff & Sheffe, 2018), our result shows a fundamental difference between LDP and DP contextual bandits learning.
73 - Dattaraj Rao 2020
Contextual bandits provide an effective way to model the dynamic data problem in ML by leveraging online (incremental) learning to continuously adjust the predictions based on changing environment. We explore details on contextual bandits, an extensi on to the traditional reinforcement learning (RL) problem and build a novel algorithm to solve this problem using an array of action-based learners. We apply this approach to model an article recommendation system using an array of stochastic gradient descent (SGD) learners to make predictions on rewards based on actions taken. We then extend the approach to a publicly available MovieLens dataset and explore the findings. First, we make available a simplified simulated dataset showing varying user preferences over time and how this can be evaluated with static and dynamic learning algorithms. This dataset made available as part of this research is intentionally simulated with limited number of features and can be used to evaluate different problem-solving strategies. We will build a classifier using static dataset and evaluate its performance on this dataset. We show limitations of static learner due to fixed context at a point of time and how changing that context brings down the accuracy. Next we develop a novel algorithm for solving the contextual bandit problem. Similar to the linear bandits, this algorithm maps the reward as a function of context vector but uses an array of learners to capture variation between actions/arms. We develop a bandit algorithm using an array of stochastic gradient descent (SGD) learners, with separate learner per arm. Finally, we will apply this contextual bandit algorithm to predicting movie ratings over time by different users from the standard Movie Lens dataset and demonstrate the results.
We consider the linear contextual bandit problem with resource consumption, in addition to reward generation. In each round, the outcome of pulling an arm is a reward as well as a vector of resource consumptions. The expected values of these outcomes depend linearly on the context of that arm. The budget/capacity constraints require that the total consumption doesnt exceed the budget for each resource. The objective is once again to maximize the total reward. This problem turns out to be a common generalization of classic linear contextual bandits (linContextual), bandits with knapsacks (BwK), and the online stochastic packing problem (OSPP). We present algorithms with near-optimal regret bounds for this problem. Our bounds compare favorably to results on the unstructured version of the problem where the relation between the contexts and the outcomes could be arbitrary, but the algorithm only competes against a fixed set of policies accessible through an optimization oracle. We combine techniques from the work on linContextual, BwK, and OSPP in a nontrivial manner while also tackling new difficulties that are not present in any of these special cases.
We consider a contextual version of multi-armed bandit problem with global knapsack constraints. In each round, the outcome of pulling an arm is a scalar reward and a resource consumption vector, both dependent on the context, and the global knapsack constraints require the total consumption for each resource to be below some pre-fixed budget. The learning agent competes with an arbitrary set of context-dependent policies. This problem was introduced by Badanidiyuru et al. (2014), who gave a computationally inefficient algorithm with near-optimal regret bounds for it. We give a computationally efficient algorithm for this problem with slightly better regret bounds, by generalizing the approach of Agarwal et al. (2014) for the non-constrained version of the problem. The computational time of our algorithm scales logarithmically in the size of the policy space. This answers the main open question of Badanidiyuru et al. (2014). We also extend our results to a variant where there are no knapsack constraints but the objective is an arbitrary Lipschitz concave function of the sum of outcome vectors.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا