ﻻ يوجد ملخص باللغة العربية
Tree-width and its linear variant path-width play a central role for the graph minor relation. In particular, Robertson and Seymour (1983) proved that for every tree~$T$, the class of graphs that do not contain $T$ as a minor has bounded path-width. For the pivot-minor relation, rank-width and linear rank-width take over the role from tree-width and path-width. As such, it is natural to examine if for every tree~$T$, the class of graphs that do not contain $T$ as a pivot-minor has bounded linear rank-width. We first prove that this statement is false whenever $T$ is a tree that is not a caterpillar. We conjecture that the statement is true if $T$ is a caterpillar. We are also able to give partial confirmation of this conjecture by proving: (1) for every tree $T$, the class of $T$-pivot-minor-free distance-hereditary graphs has bounded linear rank-width if and only if $T$ is a caterpillar; (2) for every caterpillar $T$ on at most four vertices, the class of $T$-pivot-minor-free graphs has bounded linear rank-width. To prove our second result, we only need to consider $T=P_4$ and $T=K_{1,3}$, but we follow a general strategy: first we show that the class of $T$-pivot-minor-free graphs is contained in some class of $(H_1,H_2)$-free graphs, which we then show to have bounded linear rank-width. In particular, we prove that the class of $(K_3,S_{1,2,2})$-free graphs has bounded linear rank-width, which strengthens a known result that this graph class has bounded rank-width.
The cut-rank of a set $X$ in a graph $G$ is the rank of the $Xtimes (V(G)-X)$ submatrix of the adjacency matrix over the binary field. A split is a partition of the vertex set into two sets $(X,Y)$ such that the cut-rank of $X$ is less than $2$ and b
We show that for pairs $(Q,R)$ and $(S,T)$ of disjoint subsets of vertices of a graph $G$, if $G$ is sufficiently large, then there exists a vertex $v$ in $V(G)-(Qcup Rcup Scup T)$ such that there are two ways to reduce $G$ by a vertex-minor operatio
Minimum $k$-Section denotes the NP-hard problem to partition the vertex set of a graph into $k$ sets of sizes as equal as possible while minimizing the cut width, which is the number of edges between these sets. When $k$ is an input parameter and $n$
A clique minor in a graph G can be thought of as a set of connected subgraphs in G that are pairwise disjoint and pairwise adjacent. The Hadwiger number h(G) is the maximum cardinality of a clique minor in G. This paper studies clique minors in the C
Tree-chromatic number is a chromatic version of treewidth, where the cost of a bag in a tree-decomposition is measured by its chromatic number rather than its size. Path-chromatic number is defined analogously. These parameters were introduced by Sey