ﻻ يوجد ملخص باللغة العربية
Humor is an important social phenomenon, serving complex social and psychological functions. However, despite being studied for millennia humor is computationally not well understood, often considered an AI-complete problem. In this work, we introduce a novel setting in humor mining: automatically detecting funny and unusual scientific papers. We are inspired by the Ig Nobel prize, a satirical prize awarded annually to celebrate funny scientific achievements (example past winner: Are cows more likely to lie down the longer they stand?). This challenging task has unique characteristics that make it particularly suitable for automatic learning. We construct a dataset containing thousands of funny papers and use it to learn classifiers, combining findings from psychology and linguistics with recent advances in NLP. We use our models to identify potentially funny papers in a large dataset of over 630,000 articles. The results demonstrate the potential of our methods, and more broadly the utility of integrating state-of-the-art NLP methods with insights from more traditional disciplines.
False information spread via the internet and social media influences public opinion and user activity, while generative models enable fake content to be generated faster and more cheaply than had previously been possible. In the not so distant futur
A recent approach for few-shot text classification is to convert textual inputs to cloze questions that contain some form of task description, process them with a pretrained language model and map the predicted words to labels. Manually defining this
Texts like news, encyclopedias, and some social media strive for objectivity. Yet bias in the form of inappropriate subjectivity - introducing attitudes via framing, presupposing truth, and casting doubt - remains ubiquitous. This kind of bias erodes
We analyze state-of-the-art deep learning models for three tasks: question answering on (1) images, (2) tables, and (3) passages of text. Using the notion of emph{attribution} (word importance), we find that these deep networks often ignore important
Distinguishing between singular and plural you in English is a challenging task which has potential for downstream applications, such as machine translation or coreference resolution. While formal written English does not distinguish between these ca