ﻻ يوجد ملخص باللغة العربية
False information spread via the internet and social media influences public opinion and user activity, while generative models enable fake content to be generated faster and more cheaply than had previously been possible. In the not so distant future, identifying fake content generated by deep learning models will play a key role in protecting users from misinformation. To this end, a dataset containing human and computer-generated headlines was created and a user study indicated that humans were only able to identify the fake headlines in 47.8% of the cases. However, the most accurate automatic approach, transformers, achieved an overall accuracy of 85.7%, indicating that content generated from language models can be filtered out accurately.
Image2Speech is the relatively new task of generating a spoken description of an image. This paper presents an investigation into the evaluation of this task. For this, first an Image2Speech system was implemented which generates image captions consi
A recent approach for few-shot text classification is to convert textual inputs to cloze questions that contain some form of task description, process them with a pretrained language model and map the predicted words to labels. Manually defining this
Humor is an important social phenomenon, serving complex social and psychological functions. However, despite being studied for millennia humor is computationally not well understood, often considered an AI-complete problem. In this work, we introduc
Modern botnets rely on domain-generation algorithms (DGAs) to build resilient command-and-control infrastructures. Recent works focus on recognizing automatically generated domains (AGDs) from DNS traffic, which potentially allows to identify previou
While state-of-the-art NLP models have been achieving the excellent performance of a wide range of tasks in recent years, important questions are being raised about their robustness and their underlying sensitivity to systematic biases that may exist