ﻻ يوجد ملخص باللغة العربية
Recent discovery of spin-orbit torques (SOTs) within magnetic single-layers has attracted attention in the field of spintronics. However, it has remained elusive as to how to understand and how to tune the SOTs. Here, utilizing the single layers of chemically disordered Fe$_x$Pt$_{1-x}$, we unveil the mechanism of the unexpected bulk SOTs by studying their dependence on the introduction of a controlled vertical composition gradient and on temperature. We find that the bulk damping like SOT arises from an imbalanced internal spin current that is transversely polarized and independent of the magnetization orientation. The torque can be strong only in the presence of a vertical composition gradient and the SOT efficiency per electric field is insensitive to temperature but changes sign upon reversal of the orientation of the composition gradient, which are in analogue to behaviors of the strain. From these characteristics we conclude that the imbalanced internal spin current originates from a bulk spin Hall effect and that the associated inversion asymmetry that allows for a non-zero net torque is most likely a strain non-uniformity induced by the composition gradient. The fieldlike SOT is a relatively small bulk effect compared to the dampinglike SOT. This work points to the possibility of developing low-power single-layer SOT devices by strain engineering.
Strong damping-like spin-orbit torque ({tau}DL) has great potential for enabling ultrafast energy-efficient magnetic memories, oscillators, and logic. So far, the reported {tau}DL exerted on a thin-film magnet must result from an externally generated
We report on a new method to determine the degree of bulk spin polarization in single crystal Co$_{(1-x)}$Fe$_x$S$_2$ by modeling magnetic Compton scattering with {it ab initio} calculations. Spin-dependent Compton profiles were measured for CoS$_2$
We experimentally investigate spin-orbit torques and spin pumping in NiFe/Pt bilayers with direct and interrupted interfaces. The damping-like and field-like torques are simultaneously measured with spin-torque ferromagnetic resonance tuned by a dc b
While tremendous work has gone into spin-orbit torque and spin current generation, charge-to-spin conversion efficiency remains weak in silicon to date, generally stemming from the low spin-orbit coupling (low atomic number, Z) and lack of bulk latti
Spin-orbit torques offer a promising mechanism for electrically controlling magnetization dynamics in nanoscale heterostructures. While spin-orbit torques occur predominately at interfaces, the physical mechanisms underlying these torques can origina