ﻻ يوجد ملخص باللغة العربية
An analytical metric of four-dimensional General Relativity, representing an array of collinear and accelerating black holes, is constructed with the inverse scattering method. The solution can be completely regularised from any conical singularity, thanks to the presence of an external gravitational field. Therefore the multi-black hole configuration can be maintained at equilibrium without the need of string or struts. Some notable subcases such as the accelerating distorted Schwarzschild black hole and the double distorted C-metric are explicitly presented. The Smarr law and the thermodynamics of these systems is studied. The Bonnor-Swaminarayan and the Biv{c}ak-Hoenselaers-Schmidt particle metrics are recovered, through appropriate limits, from the multi-black holes solutions.
We present and analyze a class of exact spacetimes which describe accelerating black holes with a NUT parameter. First, we verify that the intricate metric found by Chng, Mann and Stelea in 2006 indeed solves Einsteins vacuum field equations of Gener
Using the covariant phase space formalism, we compute the conserved charges for a solution, describing an accelerating and electrically charged Reissner-Nordstrom black hole. The metric is regular provided that the acceleration is driven by an extern
We study the interior of distorted stationary rotating black holes on the example of a Kerr black hole distorted by external static and axisymmetric mass distribution. We show that there is a duality transformation between the outer and inner horizon
An exact solution of Einsteins equations which represents a pair of accelerating and rotating black holes (a generalised form of the spinning C-metric) is presented. The starting point is a form of the Plebanski-Demianski metric which, in addition to
We prove that a generalized Schwarzschild-like ansatz can be consistently employed to construct $d$-dimensional static vacuum black hole solutions in any metric theory of gravity for which the Lagrangian is a scalar invariant constructed from the Rie