ﻻ يوجد ملخص باللغة العربية
We prove that a generalized Schwarzschild-like ansatz can be consistently employed to construct $d$-dimensional static vacuum black hole solutions in any metric theory of gravity for which the Lagrangian is a scalar invariant constructed from the Riemann tensor and its covariant derivatives of arbitrary order. Namely, we show that, apart from containing two arbitrary functions $a(r)$ and $f(r)$ (essentially, the $g_{tt}$ and $g_{rr}$ components), in any such theory the line-element may admit as a base space {em any} isotropy-irreducible homogeneous space. Technically, this ensures that the field equations generically reduce to two ODEs for $a(r)$ and $f(r)$, and dramatically enlarges the space of black hole solutions and permitted horizon geometries for the considered theories. We then exemplify our results in concrete contexts by constructing solutions in particular theories such as Gauss-Bonnet, quadratic, $F(R)$ and $F$(Lovelock) gravity, and certain conformal gravities.
Recent results of arXiv:1907.08788 on universal black holes in $d$ dimensions are summarized. These are static metrics with an isotropy-irreducible homogeneous base space which can be consistently employed to construct solutions to virtually any metric theory of gravity in vacuum.
We explore how far one can go in constructing $d$-dimensional static black holes coupled to $p$-form and scalar fields before actually specifying the gravity and electrodynamics theory one wants to solve. At the same time, we study to what extent one
In the presence of a complex scalar field scalar-tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and ordinary hai
We consider a gravitating system consisting of a scalar field minimally coupled to gravity with a self-interacting potential and an U(1) electromagnetic field. Solving the coupled Einstein-Maxwell-scalar system we find exact hairy charged black hole
We investigate black holes formed by static perfect fluid with $p=-rho/3$. These represent the black holes in $S_3$ and $H_3$ spatial geometries. There are three classes of black-hole solutions, two $S_3$ types and one $H_3$ type. The interesting sol