ﻻ يوجد ملخص باللغة العربية
Using the covariant phase space formalism, we compute the conserved charges for a solution, describing an accelerating and electrically charged Reissner-Nordstrom black hole. The metric is regular provided that the acceleration is driven by an external electric field, in spite of the usual string of the standard C-metric. The Smarr formula and the first law of black hole thermodynamics are fulfilled. The resulting mass has the same form of the Christodoulou-Ruffini mass formula. On the basis of these results, we can extrapolate the mass and thermodynamics of the rotating C-metric, which describes a Kerr-Newman-(A)dS black hole accelerated by a pulling string.
We present and analyze a class of exact spacetimes which describe accelerating black holes with a NUT parameter. First, we verify that the intricate metric found by Chng, Mann and Stelea in 2006 indeed solves Einsteins vacuum field equations of Gener
An analytical metric of four-dimensional General Relativity, representing an array of collinear and accelerating black holes, is constructed with the inverse scattering method. The solution can be completely regularised from any conical singularity,
We elaborate on the role of higher-derivative curvature invariants as a quantum selection mechanism of regular spacetimes in the framework of the Lorentzian path integral approach to quantum gravity. We show that for a large class of black hole metri
In this work, we consider that in energy scales greater than the Planck energy, the geometry, fundamental physical constants, as charge, mass, speed of light and Newtonian constant of gravitation, and matter fields will depend on the scale. This type
A common argument suggests that non-singular geometries may not describe black holes observed in nature since they are unstable due to a mass-inflation effect. We analyze the dynamics associated with spherically symmetric, regular black holes taking