ترغب بنشر مسار تعليمي؟ اضغط هنا

DialogueCRN: Contextual Reasoning Networks for Emotion Recognition in Conversations

72   0   0.0 ( 0 )
 نشر من قبل Dou Hu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Emotion Recognition in Conversations (ERC) has gained increasing attention for developing empathetic machines. Recently, many approaches have been devoted to perceiving conversational context by deep learning models. However, these approaches are insufficient in understanding the context due to lacking the ability to extract and integrate emotional clues. In this work, we propose novel Contextual Reasoning Networks (DialogueCRN) to fully understand the conversational context from a cognitive perspective. Inspired by the Cognitive Theory of Emotion, we design multi-turn reasoning modules to extract and integrate emotional clues. The reasoning module iteratively performs an intuitive retrieving process and a conscious reasoning process, which imitates human unique cognitive thinking. Extensive experiments on three public benchmark datasets demonstrate the effectiveness and superiority of the proposed model.



قيم البحث

اقرأ أيضاً

We address the problem of recognizing emotion cause in conversations, define two novel sub-tasks of this problem, and provide a corresponding dialogue-level dataset, along with strong Transformer-based baselines. The dataset is available at https://g ithub.com/declare-lab/RECCON. Introduction: Recognizing the cause behind emotions in text is a fundamental yet under-explored area of research in NLP. Advances in this area hold the potential to improve interpretability and performance in affect-based models. Identifying emotion causes at the utterance level in conversations is particularly challenging due to the intermingling dynamics among the interlocutors. Method: We introduce the task of Recognizing Emotion Cause in CONversations with an accompanying dataset named RECCON, containing over 1,000 dialogues and 10,000 utterance cause-effect pairs. Furthermore, we define different cause types based on the source of the causes, and establish strong Transformer-based baselines to address two different sub-tasks on this dataset: causal span extraction and causal emotion entailment. Result: Our Transformer-based baselines, which leverage contextual pre-trained embeddings, such as RoBERTa, outperform the state-of-the-art emotion cause extraction approaches Conclusion: We introduce a new task highly relevant for (explainable) emotion-aware artificial intelligence: recognizing emotion cause in conversations, provide a new highly challenging publicly available dialogue-level dataset for this task, and give strong baseline results on this dataset.
Emotion classification in text is typically performed with neural network models which learn to associate linguistic units with emotions. While this often leads to good predictive performance, it does only help to a limited degree to understand how e motions are communicated in various domains. The emotion component process model (CPM) by Scherer (2005) is an interesting approach to explain emotion communication. It states that emotions are a coordinated process of various subcomponents, in reaction to an event, namely the subjective feeling, the cognitive appraisal, the expression, a physiological bodily reaction, and a motivational action tendency. We hypothesize that these components are associated with linguistic realizations: an emotion can be expressed by describing a physiological bodily reaction (he was trembling), or the expression (she smiled), etc. We annotate existing literature and Twitter emotion corpora with emotion component classes and find that emotions on Twitter are predominantly expressed by event descriptions or subjective reports of the feeling, while in literature, authors prefer to describe what characters do, and leave the interpretation to the reader. We further include the CPM in a multitask learning model and find that this supports the emotion categorization. The annotated corpora are available at https://www.ims.uni-stuttgart.de/data/emotion.
For the task of conversation emotion recognition, recent works focus on speaker relationship modeling but ignore the role of utterances emotional tendency.In this paper, we propose a new expression paradigm of sentence-level emotion orientation vecto r to model the potential correlation of emotions between sentence vectors. Based on it, we design an emotion recognition model, which extracts the sentence-level emotion orientation vectors from the language model and jointly learns from the dialogue sentiment analysis model and extracted sentence-level emotion orientation vectors to identify the speakers emotional orientation during the conversation. We conduct experiments on two benchmark datasets and compare them with the five baseline models.The experimental results show that our model has better performance on all data sets.
This paper presents our pioneering effort for emotion recognition in conversation (ERC) with pre-trained language models. Unlike regular documents, conversational utterances appear alternately from different parties and are usually organized as hiera rchical structures in previous work. Such structures are not conducive to the application of pre-trained language models such as XLNet. To address this issue, we propose an all-in-one XLNet model, namely DialogXL, with enhanced memory to store longer historical context and dialog-aware self-attention to deal with the multi-party structures. Specifically, we first modify the recurrence mechanism of XLNet from segment-level to utterance-level in order to better model the conversational data. Second, we introduce dialog-aware self-attention in replacement of the vanilla self-attention in XLNet to capture useful intra- and inter-speaker dependencies. Extensive experiments are conducted on four ERC benchmarks with mainstream models presented for comparison. The experimental results show that the proposed model outperforms the baselines on all the datasets. Several other experiments such as ablation study and error analysis are also conducted and the results confirm the role of the critical modules of DialogXL.
Language modeling (LM) for automatic speech recognition (ASR) does not usually incorporate utterance level contextual information. For some domains like voice assistants, however, additional context, such as the time at which an utterance was spoken, provides a rich input signal. We introduce an attention mechanism for training neural speech recognition language models on both text and non-linguistic contextual data. When applied to a large de-identified dataset of utterances collected by a popular voice assistant platform, our method reduces perplexity by 7.0% relative over a standard LM that does not incorporate contextual information. When evaluated on utterances extracted from the long tail of the dataset, our method improves perplexity by 9.0% relative over a standard LM and by over 2.8% relative when compared to a state-of-the-art model for contextual LM.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا