ترغب بنشر مسار تعليمي؟ اضغط هنا

SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

142   0   0.0 ( 0 )
 نشر من قبل Zaijing Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

For the task of conversation emotion recognition, recent works focus on speaker relationship modeling but ignore the role of utterances emotional tendency.In this paper, we propose a new expression paradigm of sentence-level emotion orientation vector to model the potential correlation of emotions between sentence vectors. Based on it, we design an emotion recognition model, which extracts the sentence-level emotion orientation vectors from the language model and jointly learns from the dialogue sentiment analysis model and extracted sentence-level emotion orientation vectors to identify the speakers emotional orientation during the conversation. We conduct experiments on two benchmark datasets and compare them with the five baseline models.The experimental results show that our model has better performance on all data sets.



قيم البحث

اقرأ أيضاً

Emotion classification in text is typically performed with neural network models which learn to associate linguistic units with emotions. While this often leads to good predictive performance, it does only help to a limited degree to understand how e motions are communicated in various domains. The emotion component process model (CPM) by Scherer (2005) is an interesting approach to explain emotion communication. It states that emotions are a coordinated process of various subcomponents, in reaction to an event, namely the subjective feeling, the cognitive appraisal, the expression, a physiological bodily reaction, and a motivational action tendency. We hypothesize that these components are associated with linguistic realizations: an emotion can be expressed by describing a physiological bodily reaction (he was trembling), or the expression (she smiled), etc. We annotate existing literature and Twitter emotion corpora with emotion component classes and find that emotions on Twitter are predominantly expressed by event descriptions or subjective reports of the feeling, while in literature, authors prefer to describe what characters do, and leave the interpretation to the reader. We further include the CPM in a multitask learning model and find that this supports the emotion categorization. The annotated corpora are available at https://www.ims.uni-stuttgart.de/data/emotion.
This paper presents our pioneering effort for emotion recognition in conversation (ERC) with pre-trained language models. Unlike regular documents, conversational utterances appear alternately from different parties and are usually organized as hiera rchical structures in previous work. Such structures are not conducive to the application of pre-trained language models such as XLNet. To address this issue, we propose an all-in-one XLNet model, namely DialogXL, with enhanced memory to store longer historical context and dialog-aware self-attention to deal with the multi-party structures. Specifically, we first modify the recurrence mechanism of XLNet from segment-level to utterance-level in order to better model the conversational data. Second, we introduce dialog-aware self-attention in replacement of the vanilla self-attention in XLNet to capture useful intra- and inter-speaker dependencies. Extensive experiments are conducted on four ERC benchmarks with mainstream models presented for comparison. The experimental results show that the proposed model outperforms the baselines on all the datasets. Several other experiments such as ablation study and error analysis are also conducted and the results confirm the role of the critical modules of DialogXL.
Recent years have witnessed great progress on building emotional chatbots. Tremendous methods have been proposed for chatbots to generate responses with given emotions. However, the emotion changes of the user during the conversation has not been ful ly explored. In this work, we study the problem of positive emotion elicitation, which aims to generate responses that can elicit positive emotion of the user, in human-machine conversation. We propose a weakly supervised Emotion Eliciting Machine (EEM) to address this problem. Specifically, we first collect weak labels of user emotion status changes in a conversion based on a pre-trained emotion classifier. Then we propose a dual encoder-decoder structure to model the generation of responses in both positive and negative side based on the changes of the users emotion status in the conversation. An emotion eliciting factor is introduced on top of the dual structure to balance the positive and negative emotional impacts on the generated response during emotion elicitation. The factor also provides a fine-grained controlling manner for emotion elicitation. Experimental results on a large real-world dataset show that EEM outperforms the existing models in generating responses with positive emotion elicitation.
210 - Jiangnan Li , Zheng Lin , Peng Fu 2020
Emotion Recognition in Conversation (ERC) is a more challenging task than conventional text emotion recognition. It can be regarded as a personalized and interactive emotion recognition task, which is supposed to consider not only the semantic inform ation of text but also the influences from speakers. The current method models speakers interactions by building a relation between every two speakers. However, this fine-grained but complicated modeling is computationally expensive, hard to extend, and can only consider local context. To address this problem, we simplify the complicated modeling to a binary version: Intra-Speaker and Inter-Speaker dependencies, without identifying every unique speaker for the targeted speaker. To better achieve the simplified interaction modeling of speakers in Transformer, which shows excellent ability to settle long-distance dependency, we design three types of masks and respectively utilize them in three independent Transformer blocks. The designed masks respectively model the conventional context modeling, Intra-Speaker dependency, and Inter-Speaker dependency. Furthermore, different speaker-aware information extracted by Transformer blocks diversely contributes to the prediction, and therefore we utilize the attention mechanism to automatically weight them. Experiments on two ERC datasets indicate that our model is efficacious to achieve better performance.
Emotion recognition in conversation (ERC) is a crucial component in affective dialogue systems, which helps the system understand users emotions and generate empathetic responses. However, most works focus on modeling speaker and contextual informati on primarily on the textual modality or simply leveraging multimodal information through feature concatenation. In order to explore a more effective way of utilizing both multimodal and long-distance contextual information, we propose a new model based on multimodal fused graph convolutional network, MMGCN, in this work. MMGCN can not only make use of multimodal dependencies effectively, but also leverage speaker information to model inter-speaker and intra-speaker dependency. We evaluate our proposed model on two public benchmark datasets, IEMOCAP and MELD, and the results prove the effectiveness of MMGCN, which outperforms other SOTA methods by a significant margin under the multimodal conversation setting.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا