ﻻ يوجد ملخص باللغة العربية
Mutual knowledge distillation (MKD) improves a model by distilling knowledge from another model. However, not all knowledge is certain and correct, especially under adverse conditions. For example, label noise usually leads to less reliable models due to the undesired memorisation [1, 2]. Wrong knowledge misleads the learning rather than helps. This problem can be handled by two aspects: (i) improving the reliability of a model where the knowledge is from (i.e., knowledge sources reliability); (ii) selecting reliable knowledge for distillation. In the literature, making a model more reliable is widely studied while selective MKD receives little attention. Therefore, we focus on studying selective MKD and highlight its importance in this work. Concretely, a generic MKD framework, Confident knowledge selection followed by Mutual Distillation (CMD), is designed. The key component of CMD is a generic knowledge selection formulation, making the selection threshold either static (CMD-S) or progressive (CMD-P). Additionally, CMD covers two special cases: zero knowledge and all knowledge, leading to a unified MKD framework. We empirically find CMD-P performs better than CMD-S. The main reason is that a models knowledge upgrades and becomes confident as the training progresses. Extensive experiments are present to demonstrate the effectiveness of CMD and thoroughly justify the design of CMD. For example, CMD-P obtains new state-of-the-art results in robustness against label noise.
Attention mechanisms have shown promising results in sequence modeling tasks that require long-term memory. Recent work investigated mechanisms to reduce the computational cost of preserving and storing memories. However, not all content in the past
Empirical research in Natural Language Processing (NLP) has adopted a narrow set of principles for assessing hypotheses, relying mainly on p-value computation, which suffers from several known issues. While alternative proposals have been well-debate
Many techniques have been proposed for quickly detecting and containing malware-generated network attacks such as large-scale denial of service attacks; unfortunately, much damage is already done within the first few minutes of an attack, before it i
In deep model compression, the recent finding Lottery Ticket Hypothesis (LTH) (Frankle & Carbin, 2018) pointed out that there could exist a winning ticket (i.e., a properly pruned sub-network together with original weight initialization) that can ach
Multilingual BERT (mBERT) trained on 104 languages has shown surprisingly good cross-lingual performance on several NLP tasks, even without explicit cross-lingual signals. However, these evaluations have focused on cross-lingual transfer with high-re