ﻻ يوجد ملخص باللغة العربية
Empirical research in Natural Language Processing (NLP) has adopted a narrow set of principles for assessing hypotheses, relying mainly on p-value computation, which suffers from several known issues. While alternative proposals have been well-debated and adopted in other fields, they remain rarely discussed or used within the NLP community. We address this gap by contrasting various hypothesis assessment techniques, especially those not commonly used in the field (such as evaluations based on Bayesian inference). Since these statistical techniques differ in the hypotheses they can support, we argue that practitioners should first decide their target hypothesis before choosing an assessment method. This is crucial because common fallacies, misconceptions, and misinterpretation surrounding hypothesis assessment methods often stem from a discrepancy between what one would like to claim versus what the method used actually assesses. Our survey reveals that these issues are omnipresent in the NLP research community. As a step forward, we provide best practices and guidelines tailored to NLP research, as well as an easy-to-use package called HyBayes for Bayesian assessment of hypotheses, complementing existing tools.
Attention mechanisms have shown promising results in sequence modeling tasks that require long-term memory. Recent work investigated mechanisms to reduce the computational cost of preserving and storing memories. However, not all content in the past
Mutual knowledge distillation (MKD) improves a model by distilling knowledge from another model. However, not all knowledge is certain and correct, especially under adverse conditions. For example, label noise usually leads to less reliable models du
Multilingual BERT (mBERT) trained on 104 languages has shown surprisingly good cross-lingual performance on several NLP tasks, even without explicit cross-lingual signals. However, these evaluations have focused on cross-lingual transfer with high-re
We present a pedagogical systematic investigation of the accuracy of Eulerian and Lagrangian perturbation theories of large-scale structure. We show that significant differences exist between them especially when trying to model the Baryon Acoustic O
Many techniques have been proposed for quickly detecting and containing malware-generated network attacks such as large-scale denial of service attacks; unfortunately, much damage is already done within the first few minutes of an attack, before it i