ﻻ يوجد ملخص باللغة العربية
Federated Learning allows training machine learning models by using the computation and private data resources of a large number of distributed clients such as smartphones and IoT devices. Most existing works on Federated Learning (FL) assume the clients have ground-truth labels. However, in many practical scenarios, clients may be unable to label task-specific data, e.g., due to lack of expertise. In this work, we consider a server that hosts a labeled dataset, and wishes to leverage clients with unlabeled data for supervised learning. We propose a new Federated Learning framework referred to as SemiFL in order to address the problem of Semi-Supervised Federated Learning (SSFL). In SemiFL, clients have completely unlabeled data, while the server has a small amount of labeled data. SemiFL is communication efficient since it separates the training of server-side supervised data and client-side unsupervised data. We demonstrate various efficient strategies of SemiFL that enhance learning performance. Extensive empirical evaluations demonstrate that our communication efficient method can significantly improve the performance of a labeled server with unlabeled clients. Moreover, we demonstrate that SemiFL can outperform many existing FL results trained with fully supervised data, and perform competitively with the state-of-the-art centralized Semi-Supervised Learning (SSL) methods. For instance, in standard communication efficient scenarios, our method can perform 93% accuracy on the CIFAR10 dataset with only 4000 labeled samples at the server. Such accuracy is only 2% away from the result trained from 50000 fully labeled data, and it improves about 30% upon existing SSFL methods in the communication efficient setting.
Existing approaches to federated learning suffer from a communication bottleneck as well as convergence issues due to sparse client participation. In this paper we introduce a novel algorithm, called FetchSGD, to overcome these challenges. FetchSGD c
Federated learning involves training machine learning models over devices or data silos, such as edge processors or data warehouses, while keeping the data local. Training in heterogeneous and potentially massive networks introduces bias into the sys
Petabytes of data are generated each day by emerging Internet of Things (IoT), but only few of them can be finally collected and used for Machine Learning (ML) purposes due to the apprehension of data & privacy leakage, which seriously retarding MLs
Federated learning (FL) has emerged as an effective technique to co-training machine learning models without actually sharing data and leaking privacy. However, most existing FL methods focus on the supervised setting and ignore the utilization of un
Training deep learning models on in-home IoT sensory data is commonly used to recognise human activities. Recently, federated learning systems that use edge devices as clients to support local human activity recognition have emerged as a new paradigm