ﻻ يوجد ملخص باللغة العربية
Training recurrent neural networks is known to be difficult when time dependencies become long. Consequently, training standard gated cells such as gated recurrent units and long-short term memory on benchmarks where long-term memory is required remains an arduous task. In this work, we propose a general way to initialize any recurrent network connectivity through a process called warm-up to improve its capability to learn arbitrarily long time dependencies. This initialization process is designed to maximize network reachable multi-stability, i.e. the number of attractors within the network that can be reached through relevant input trajectories. Warming-up is performed before training, using stochastic gradient descent on a specifically designed loss. We show that warming-up greatly improves recurrent neural network performance on long-term memory benchmarks for multiple recurrent cell types, but can sometimes impede precision. We therefore introduce a parallel recurrent network structure with partial warm-up that is shown to greatly improve learning on long time-series while maintaining high levels of precision. This approach provides a general framework for improving learning abilities of any recurrent cell type when long-term memory is required.
Recurrent neural networks (RNNs), including long short-term memory (LSTM) RNNs, have produced state-of-the-art results on a variety of speech recognition tasks. However, these models are often too large in size for deployment on mobile devices with m
In this paper, the output reachable estimation and safety verification problems for multi-layer perceptron neural networks are addressed. First, a conception called maximum sensitivity in introduced and, for a class of multi-layer perceptrons whose a
The abundant recurrent horizontal and feedback connections in the primate visual cortex are thought to play an important role in bringing global and semantic contextual information to early visual areas during perceptual inference, helping to resolve
Structural credit assignment for recurrent learning is challenging. An algorithm called RTRL can compute gradients for recurrent networks online but is computationally intractable for large networks. Alternatives, such as BPTT, are not online. In thi
Origin-destination (OD) matrices are often used in urban planning, where a city is partitioned into regions and an element (i, j) in an OD matrix records the cost (e.g., travel time, fuel consumption, or travel speed) from region i to region j. In th