ترغب بنشر مسار تعليمي؟ اضغط هنا

Recurrent Multi-Graph Neural Networks for Travel Cost Prediction

193   0   0.0 ( 0 )
 نشر من قبل Bin Yang
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Origin-destination (OD) matrices are often used in urban planning, where a city is partitioned into regions and an element (i, j) in an OD matrix records the cost (e.g., travel time, fuel consumption, or travel speed) from region i to region j. In this paper, we partition a day into multiple intervals, e.g., 96 15-min intervals and each interval is associated with an OD matrix which represents the costs in the interval; and we consider sparse and stochastic OD matrices, where the elements represent stochastic but not deterministic costs and some elements are missing due to lack of data between two regions. We solve the sparse, stochastic OD matrix forecasting problem. Given a sequence of historical OD matrices that are sparse, we aim at predicting future OD matrices with no empty elements. We propose a generic learning framework to solve the problem by dealing with sparse matrices via matrix factorization and two graph convolutional neural networks and capturing temporal dynamics via recurrent neural network. Empirical studies using two taxi datasets from different countries verify the effectiveness of the proposed framework.



قيم البحث

اقرأ أيضاً

In this paper, we study the problem of using representation learning to assist information diffusion prediction on graphs. In particular, we aim at estimating the probability of an inactive node to be activated next in a cascade. Despite the success of recent deep learning methods for diffusion, we find that they often underexplore the cascade structure. We consider a cascade as not merely a sequence of nodes ordered by their activation time stamps; instead, it has a richer structure indicating the diffusion process over the data graph. As a result, we introduce a new data model, namely diffusion topologies, to fully describe the cascade structure. We find it challenging to model diffusion topologies, which are dynamic directed acyclic graphs (DAGs), with the existing neural networks. Therefore, we propose a novel topological recurrent neural network, namely Topo-LSTM, for modeling dynamic DAGs. We customize Topo-LSTM for the diffusion prediction task, and show it improves the state-of-the-art baselines, by 20.1%--56.6% (MAP) relatively, across multiple real-world data sets. Our code and data sets are available online at https://github.com/vwz/topolstm.
Genetic mutations can cause disease by disrupting normal gene function. Identifying the disease-causing mutations from millions of genetic variants within an individual patient is a challenging problem. Computational methods which can prioritize dise ase-causing mutations have, therefore, enormous applications. It is well-known that genes function through a complex regulatory network. However, existing variant effect prediction models only consider a variant in isolation. In contrast, we propose VEGN, which models variant effect prediction using a graph neural network (GNN) that operates on a heterogeneous graph with genes and variants. The graph is created by assigning variants to genes and connecting genes with an gene-gene interaction network. In this context, we explore an approach where a gene-gene graph is given and another where VEGN learns the gene-gene graph and therefore operates both on given and learnt edges. The graph neural network is trained to aggregate information between genes, and between genes and variants. Variants can exchange information via the genes they connect to. This approach improves the performance of existing state-of-the-art models.
Memory-based neural networks model temporal data by leveraging an ability to remember information for long periods. It is unclear, however, whether they also have an ability to perform complex relational reasoning with the information they remember. Here, we first confirm our intuitions that standard memory architectures may struggle at tasks that heavily involve an understanding of the ways in which entities are connected -- i.e., tasks involving relational reasoning. We then improve upon these deficits by using a new memory module -- a textit{Relational Memory Core} (RMC) -- which employs multi-head dot product attention to allow memories to interact. Finally, we test the RMC on a suite of tasks that may profit from more capable relational reasoning across sequential information, and show large gains in RL domains (e.g. Mini PacMan), program evaluation, and language modeling, achieving state-of-the-art results on the WikiText-103, Project Gutenberg, and GigaWord datasets.
We present a systematic investigation using graph neural networks (GNNs) to model organic chemical reactions. To do so, we prepared a dataset collection of four ubiquitous reactions from the organic chemistry literature. We evaluate seven different G NN architectures for classification tasks pertaining to the identification of experimental reagents and conditions. We find that models are able to identify specific graph features that affect reaction conditions and lead to accurate predictions. The results herein show great promise in advancing molecular machine learning.
We investigate the multi-step prediction of the drivable space, represented by Occupancy Grid Maps (OGMs), for autonomous vehicles. Our motivation is that accurate multi-step prediction of the drivable space can efficiently improve path planning and navigation resulting in safe, comfortable and optimum paths in autonomous driving. We train a variety of Recurrent Neural Network (RNN) based architectures on the OGM sequences from the KITTI dataset. The results demonstrate significant improvement of the prediction accuracy using our proposed difference learning method, incorporating motion related features, over the state of the art. We remove the egomotion from the OGM sequences by transforming them into a common frame. Although in the transformed sequences the KITTI dataset is heavily biased toward static objects, by learning the difference between subsequent OGMs, our proposed method provides accurate prediction over both the static and moving objects.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا