ﻻ يوجد ملخص باللغة العربية
Deployed real-world machine learning applications are often subject to uncontrolled and even potentially malicious inputs. Those out-of-domain inputs can lead to unpredictable outputs and sometimes catastrophic safety issues. Prior studies on out-of-domain detection require in-domain task labels and are limited to supervised classification scenarios. Our work tackles the problem of detecting out-of-domain samples with only unsupervised in-domain data. We utilize the latent representations of pre-trained transformers and propose a simple yet effective method to transform features across all layers to construct out-of-domain detectors efficiently. Two domain-specific fine-tuning approaches are further proposed to boost detection accuracy. Our empirical evaluations of related methods on two datasets validate that our method greatly improves out-of-domain detection ability in a more general scenario.
Large scale Pre-trained Language Models have proven to be very powerful approach in various Natural language tasks. OpenAIs GPT-2 cite{radford2019language} is notable for its capability to generate fluent, well formulated, grammatically consistent te
Web-crawled data provides a good source of parallel corpora for training machine translation models. It is automatically obtained, but extremely noisy, and recent work shows that neural machine translation systems are more sensitive to noise than tra
Pre-trained language models like BERT achieve superior performances in various NLP tasks without explicit consideration of syntactic information. Meanwhile, syntactic information has been proved to be crucial for the success of NLP applications. Howe
Multilingual pre-trained Transformers, such as mBERT (Devlin et al., 2019) and XLM-RoBERTa (Conneau et al., 2020a), have been shown to enable the effective cross-lingual zero-shot transfer. However, their performance on Arabic information extraction
Pretrained Transformers achieve remarkable performance when training and test data are from the same distribution. However, in real-world scenarios, the model often faces out-of-distribution (OOD) instances that can cause severe semantic shift proble