ﻻ يوجد ملخص باللغة العربية
Multilingual pre-trained Transformers, such as mBERT (Devlin et al., 2019) and XLM-RoBERTa (Conneau et al., 2020a), have been shown to enable the effective cross-lingual zero-shot transfer. However, their performance on Arabic information extraction (IE) tasks is not very well studied. In this paper, we pre-train a customized bilingual BERT, dubbed GigaBERT, that is designed specifically for Arabic NLP and English-to-Arabic zero-shot transfer learning. We study GigaBERTs effectiveness on zero-short transfer across four IE tasks: named entity recognition, part-of-speech tagging, argument role labeling, and relation extraction. Our best model significantly outperforms mBERT, XLM-RoBERTa, and AraBERT (Antoun et al., 2020) in both the supervised and zero-shot transfer settings. We have made our pre-trained models publicly available at https://github.com/lanwuwei/GigaBERT.
The performance of fine-tuning pre-trained language models largely depends on the hyperparameter configuration. In this paper, we investigate the performance of modern hyperparameter optimization methods (HPO) on fine-tuning pre-trained language mode
In human-level NLP tasks, such as predicting mental health, personality, or demographics, the number of observations is often smaller than the standard 768+ hidden state sizes of each layer within modern transformer-based language models, limiting th
In recent years, pre-trained Transformers have dominated the majority of NLP benchmark tasks. Many variants of pre-trained Transformers have kept breaking out, and most focus on designing different pre-training objectives or variants of self-attentio
Deployed real-world machine learning applications are often subject to uncontrolled and even potentially malicious inputs. Those out-of-domain inputs can lead to unpredictable outputs and sometimes catastrophic safety issues. Prior studies on out-of-
Pre-trained language models like BERT achieve superior performances in various NLP tasks without explicit consideration of syntactic information. Meanwhile, syntactic information has been proved to be crucial for the success of NLP applications. Howe