ترغب بنشر مسار تعليمي؟ اضغط هنا

Reinforce Security: A Model-Free Approach Towards Secure Wiretap Coding

154   0   0.0 ( 0 )
 نشر من قبل Rick Fritschek
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The use of deep learning-based techniques for approximating secure encoding functions has attracted considerable interest in wireless communications due to impressive results obtained for general coding and decoding tasks for wireless communication systems. Of particular importance is the development of model-free techniques that work without knowledge about the underlying channel. Such techniques utilize for example generative adversarial networks to estimate and model the conditional channel distribution, mutual information estimation as a reward function, or reinforcement learning. In this paper, the approach of reinforcement learning is studied and, in particular, the policy gradient method for a model-free approach of neural network-based secure encoding is investigated. Previously developed techniques for enforcing a certain co-set structure on the encoding process can be combined with recent reinforcement learning approaches. This new approach is evaluated by extensive simulations, and it is demonstrated that the resulting decoding performance of an eavesdropper is capped at a certain error level.

قيم البحث

اقرأ أيضاً

This paper considers the problem of secure coding design for a type II wiretap channel, where the main channel is noiseless and the eavesdropper channel is a general binary-input symmetric-output memoryless channel. The proposed secure error-correcti ng code has a nested code structure. Two secure nested coding schemes are studied for a type II Gaussian wiretap channel. The nesting is based on cosets of a good code sequence for the first scheme and on cosets of the dual of a good code sequence for the second scheme. In each case, the corresponding achievable rate-equivocation pair is derived based on the threshold behavior of good code sequences. The two secure coding schemes together establish an achievable rate-equivocation region, which almost covers the secrecy capacity-equivocation region in this case study. The proposed secure coding scheme is extended to a type II binary symmetric wiretap channel. A new achievable perfect secrecy rate, which improves upon the previously reported result by Thangaraj et al., is derived for this channel.
Information-theoretic security is considered in the paradigm of network coding in the presence of wiretappers, who can access one arbitrary edge subset up to a certain size, also referred to as the security level. Secure network coding is applied to prevent the leakage of the source information to the wiretappers. In this two-part paper, we consider the problem of secure network coding when the information rate and the security level can change over time. In the current paper (i.e., Part I of the two-part paper), we focus on the problem for a fixed security level and a flexible rate. To efficiently solve this problem, we put forward local-encoding-preserving secure network coding, where a family of secure linear network codes (SLNCs) is called local-encoding-preserving if all the SLNCs in this family share a common local encoding kernel at each intermediate node in the network. We present an efficient approach for constructing upon an SLNC that exists a local-encoding-preserving SLNC with the same security level and the rate reduced by one. By applying this approach repeatedly, we can obtain a family of local-encoding-preserving SLNCs with a fixed security level and multiple rates. We also develop a polynomial-time algorithm for efficient implementation of this approach. Furthermore, it is proved that the proposed approach incurs no penalty on the required field size for the existence of SLNCs in terms of the best known lower bound by Guang and Yeung. The result in this paper will be used as a building block for efficiently constructing a family of local-encoding-preserving SLNCs for all possible pairs of rate and security level, which will be discussed in the companion paper (i.e., Part II of the two-part paper).
We consider a communication network where there exist wiretappers who can access a subset of channels, called a wiretap set, which is chosen from a given collection of wiretap sets. The collection of wiretap sets can be arbitrary. Secure network codi ng is applied to prevent the source information from being leaked to the wiretappers. In secure network coding, the required alphabet size is an open problem not only of theoretical interest but also of practical importance, because it is closely related to the implementation of such coding schemes in terms of computational complexity and storage requirement. In this paper, we develop a systematic graph-theoretic approach for improving Cai and Yeungs lower bound on the required alphabet size for the existence of secure network codes. The new lower bound thus obtained, which depends only on the network topology and the collection of wiretap sets, can be significantly smaller than Cai and Yeungs lower bound. A polynomial-time algorithm is devised for efficient computation of the new lower bound.
In the two-part paper, we consider the problem of secure network coding when the information rate and the security level can change over time. To efficiently solve this problem, we put forward local-encoding-preserving secure network coding, where a family of secure linear network codes (SLNCs) is called local-encoding-preserving (LEP) if all the SLNCs in this family share a common local encoding kernel at each intermediate node in the network. In this paper (Part II), we first consider the design of a family of LEP SLNCs for a fixed rate and a flexible security level. We present a novel and efficient approach for constructing upon an SLNC that exists an LEP SLNC with the same rate and the security level increased by one. Next, we consider the design of a family of LEP SLNCs for a fixed dimension (equal to the sum of rate and security level) and a flexible pair of rate and security level. We propose another novel approach for designing an SLNC such that the same SLNC can be applied for all the rate and security-level pairs with the fixed dimension. Also, two polynomial-time algorithms are developed for efficient implementations of our two approaches, respectively. Furthermore, we prove that both approaches do not incur any penalty on the required field size for the existence of SLNCs in terms of the best known lower bound by Guang and Yeung. Finally, we consider the ultimate problem of designing a family of LEP SLNCs that can be applied to all possible pairs of rate and security level. By combining the construction of a family of LEP SLNCs for a fixed security level and a flexible rate (obtained in Part I) with the constructions of the two families of LEP SLNCs in the current paper in suitable ways, we can obtain a family of LEP SLNCs that can be applied for all possible pairs of rate and security level. Three possible such constructions are presented.
Uncertain wiretap channels are introduced. Their zero-error secrecy capacity is defined. If the sensor-estimator channel is perfect, it is also calculated. Further properties are discussed. The problem of estimating a dynamical system with nonstochas tic disturbances is studied where the sensor is connected to the estimator and an eavesdropper via an uncertain wiretap channel. The estimator should obtain a uniformly bounded estimation error whereas the eavesdroppers error should tend to infinity. It is proved that the system can be estimated securely if the zero-error capacity of the sensor-estimator channel is strictly larger than the logarithm of the systems unstable pole and the zero-error secrecy capacity of the uncertain wiretap channel is positive.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا