ﻻ يوجد ملخص باللغة العربية
We study the cross-stitch flat band lattice with a $mathcal{PT}$-symmetric on-site potential and uncover mobility edges with exact solutions. Furthermore, we study the relationship between the $mathcal{PT}$ symmetry broken point and the localization-delocalization transition point, and verify that mobility edges in this non-Hermitian model is available to signal the $mathcal{PT}$ symmetry breaking.
We propose a general analytic method to study the localization transition in one-dimensional quasicrystals with parity-time ($mathcal{PT}$) symmetry, described by complex quasiperiodic mosaic lattice models. By applying Avilas global theory of quasip
We investigate the wave packet dynamics for a one-dimensional incommensurate optical lattice with a special on-site potential which exhibits the mobility edge in a compactly analytic form. We calculate the density propagation, long-time survival prob
We demonstrate the existence of generalized Aubry-Andre self-duality in a class of non-Hermitian quasi-periodic lattices with complex potentials. From the self-duality relations, the analytical expression of mobility edges is derived. Compared to Her
The capability to temporarily arrest the propagation of optical signals is one of the main challenges hampering the ever more widespread use of light in rapid long-distance transmission as well as all-optical on-chip signal processing or computations
Using synthetic lattices of laser-coupled atomic momentum modes, we experimentally realize a recently proposed family of nearest-neighbor tight-binding models having quasiperiodic site energy modulation that host an exact mobility edge protected by a