ترغب بنشر مسار تعليمي؟ اضغط هنا

Exact mobility edges, $mathcal{PT}$-symmetry breaking and skin effect in one-dimensional non-Hermitian quasicrystals

89   0   0.0 ( 0 )
 نشر من قبل Shu Chen
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a general analytic method to study the localization transition in one-dimensional quasicrystals with parity-time ($mathcal{PT}$) symmetry, described by complex quasiperiodic mosaic lattice models. By applying Avilas global theory of quasiperiodic Schrodinger operators, we obtain exact mobility edges and prove that the mobility edge is identical to the boundary of $mathcal{PT}$-symmetry breaking, which also proves the existence of correspondence between extended (localized) states and $mathcal{PT}$-symmetry ($mathcal{PT}$-symmetry-broken) states. Furthermore, we generalize the models to more general cases with non-reciprocal hopping, which breaks $mathcal{PT}$ symmetry and generally induces skin effect, and obtain a general and analytical expression of mobility edges. While the localized states are not sensitive to the boundary conditions, the extended states become skin states when the periodic boundary condition is changed to open boundary condition. This indicates that the skin states and localized states can coexist with their boundary determined by the mobility edges.



قيم البحث

اقرأ أيضاً

We investigate localization-delocalization transition in one-dimensional non-Hermitian quasiperiodic lattices with exponential short-range hopping, which possess parity-time ($mathcal{PT}$) symmetry. The localization transition induced by the non-Her mitian quasiperiodic potential is found to occur at the $mathcal{PT}$-symmetry-breaking point. Our results also demonstrate the existence of energy dependent mobility edges, which separate the extended states from localized states and are only associated with the real part of eigen-energies. The level statistics and Loschmidt echo dynamics are also studied.
According to the topological band theory of a Hermitian system, the different electronic phases are classified in terms of topological invariants, wherein the transition between the two phases characterized by a different topological invariant is the primary signature of a topological phase transition. Recently, it has been argued that the delocalization-localization transition in a quasicrystal, described by the non-Hermitian $mathcal{PT}$-symmetric extension of the Aubry-Andr{e}-Harper (AAH) Hamiltonian can also be identified as a topological phase transition. Interestingly, the $mathcal{PT}$-symmetry also breaks down at the same critical point. However, in this article, we have shown that the delocalization-localization transition and the $mathcal{PT}$-symmetry breaking are not connected to a topological phase transition. To demonstrate this, we have studied the non-Hermitian $mathcal{PT}$-symmetric AAH Hamiltonian in the presence of Rashba Spin-Orbit (RSO) coupling. We have obtained an analytical expression of the topological transition point and compared it with the numerically obtained critical points. We have found that, except in some special cases, the critical point and the topological transition point are not the same. In fact, the delocalization-localization transition takes place earlier than the topological transition whenever they do not coincide.
97 - Zhihao Xu , Xu Xia , 2021
The emergence of the mobility edge (ME) has been recognized as an important characteristic of Anderson localization. The difficulty in understanding the physics of the MEs in three-dimensional (3D) systems from a microscopic picture promotes discover ing of models with the exact MEs in lower-dimensional systems. While most of previous studies concern on the one-dimensional (1D) quasiperiodic systems, the analytic results that allow for an accurate understanding of two-dimensional (2D) cases are rare. In this Letter, we disclose an exactly solvable 2D quasicrystal model with parity-time ($mathcal{PT}$) symmetry displaying exact MEs. In the thermodynamic limit, we unveil that the extended-localized transition point, observed at the $mathcal{PT}$ symmetry breaking point, is of topological nature characterized by a hidden winding number defined in the dual space. The 2D non-Hermitian quasicrystal model can be realized in the coupling waveguide platform, and the localization features can be detected by the excitation dynamics.
129 - Yucheng Wang , Xu Xia , Long Zhang 2020
The mobility edges (MEs) in energy which separate extended and localized states are a central concept in understanding the localization physics. In one-dimensional (1D) quasiperiodic systems, while MEs may exist for certain cases, the analytic result s which allow for an exact understanding are rare. Here we uncover a class of exactly solvable 1D models with MEs in the spectra, where quasiperiodic on-site potentials are inlaid in the lattice with equally spaced sites. The analytical solutions provide the exact results not only for the MEs, but also for the localization and extended features of all states in the spectra, as derived through computing the Lyapunov exponents from Avilas global theory, and also numerically verified by calculating the fractal dimension. We further propose a novel scheme with experimental feasibility to realize our model based on an optical Raman lattice, which paves the way for experimental exploration of the predicted exact ME physics.
106 - Xu Xia , Ke Huang , Shubo Wang 2021
Quantum localization in 1D non-Hermitian systems, especially the search for exact single-particle mobility edges, has attracted considerable interest recently. While much progress has been made, the available methods to determine the ME of such model s are still limited. In this work, we propose a new method to determine the exact mobility edge in a large class of 1D non-Hermitian quasiperiodic models with parity-time ($mathcal{PT}$) symmetry. We illustrate our method by studying a specific model. We first use our method to determine the energy-dependent mobility edge as well as the spectrum for localized eigenstates in this model. We then demonstrate that the metal-insulator transition must occur simultaneously with the spontaneous $mathcal{PT}$-symmetry breaking transition in this model. Finally, we propose an experimental protocol based on a 1D photonic lattice to distinguish the extended and localized single-particle states in our model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا