ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of tunable mobility edges in generalized Aubry-Andr{e} lattices

68   0   0.0 ( 0 )
 نشر من قبل Bryce Gadway
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using synthetic lattices of laser-coupled atomic momentum modes, we experimentally realize a recently proposed family of nearest-neighbor tight-binding models having quasiperiodic site energy modulation that host an exact mobility edge protected by a duality symmetry. These one-dimensional tight-binding models can be viewed as a generalization of the well-known Aubry-Andr{e} (AA) model, with an energy-dependent self duality condition that constitutes an analytical mobility edge relation. By adiabatically preparing the lowest and highest energy eigenstates of this model system and performing microscopic measurements of their participation ratio, we track the evolution of the mobility edge as the energy-dependent density of states is modified by the models tuning parameter. Our results show strong deviations from single-particle predictions, consistent with attractive interactions causing both enhanced localization of the lowest energy state due to self-trapping and inhibited localization of the highest energy state due to screening. This study paves the way for quantitative studies of interaction effects on self duality induced mobility edges.

قيم البحث

اقرأ أيضاً

113 - Tong Liu , Pei Wang , Shu Chen 2017
Off-diagonal Aubry-Andr{e} (AA) model has recently attracted a great deal of attention as they provide condensed matter realization of topological phases. We numerically study a generalized off-diagonal AA model with p-wave superfluid pairing in the presence of both commensurate and incommensurate hopping modulations. The phase diagram as functions of the modulation strength of incommensurate hopping and the strength of the p-wave pairing is obtained by using the multifractal analysis. We show that with the appearance of the p-wave pairing, the system exhibits mobility-edge phases and critical phases with various number of topologically protected zero-energy modes. Predicted topological nature of these exotic phases can be realized in a cold atomic system of incommensurate bichromatic optical lattice with induced p-wave superfluid pairing by using a Raman laser in proximity to a molecular Bose-Einstein condensation.
98 - Tong Liu , Hao Guo , Yong Pu 2020
We demonstrate the existence of generalized Aubry-Andre self-duality in a class of non-Hermitian quasi-periodic lattices with complex potentials. From the self-duality relations, the analytical expression of mobility edges is derived. Compared to Her mitian systems, mobility edges in non-Hermitian ones not only separate localized from extended states, but also indicate the coexistence of complex and real eigenenergies, making it possible a topological characterization of mobility edges. An experimental scheme, based on optical pulse propagation in synthetic photonic mesh lattices, is suggested to implement a non-Hermitian quasi-crystal displaying mobility edges.
A mobility edge (ME) in energy separating extended from localized states is a central concept in understanding various fundamental phenomena like the metal-insulator transition in disordered systems. In one-dimensional quasiperiodic systems, there ex ist a few models with exact MEs, and these models are beneficial to provide exact understanding of ME physics. Here we investigate two widely studied models including exact MEs, one with an exponential hopping and one with a special form of incommensurate on-site potential. We analytically prove that the two models are mutually dual, and further give the numerical verification by calculating the inverse participation ratio and Husimi function. The exact MEs of the two models are also obtained by calculating the localization lengths and using the duality relations. Our result may provide insight into realizing and observing exact MEs in both theory and experiment.
105 - Tong Liu , Shujie Cheng 2021
We study the cross-stitch flat band lattice with a $mathcal{PT}$-symmetric on-site potential and uncover mobility edges with exact solutions. Furthermore, we study the relationship between the $mathcal{PT}$ symmetry broken point and the localization- delocalization transition point, and verify that mobility edges in this non-Hermitian model is available to signal the $mathcal{PT}$ symmetry breaking.
We investigate the wave packet dynamics for a one-dimensional incommensurate optical lattice with a special on-site potential which exhibits the mobility edge in a compactly analytic form. We calculate the density propagation, long-time survival prob ability and mean square displacement of the wave packet in the regime with the mobility edge and compare with the cases in extended, localized and multifractal regimes. Our numerical results indicate that the dynamics in the mobility-edge regime mix both extended and localized features which is quite different from that in the mulitfractal phase. We utilize the Loschmidt echo dynamics by choosing different eigenstates as initial states and sudden changing the parameters of the system to distinguish the phases in the presence of such system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا