ترغب بنشر مسار تعليمي؟ اضغط هنا

Hybrid cluster-expansion and density-functional-theory approach for optical absorption in TiO2

226   0   0.0 ( 0 )
 نشر من قبل Osmo V\\\"ansk\\\"a
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A combined approach of first-principles density-functional calculations and the systematic cluster-expansion scheme is presented. The dipole, quadrupole, and Coulomb matrix elements obtained from ab initio calculations are used as an input to the microscopic many-body theory of the excitonic optical response. To demonstrate the hybrid approach for a nontrivial semiconductor system, the near-bandgap excitonic optical absorption of rutile TiO2 is computed. Comparison with experiments yields strong evidence that the observed near-bandgap features are due to a dipole-forbidden but quadrupole-allowed 1s-exciton state.

قيم البحث

اقرأ أيضاً

We report artifact-free CH3NH3PbI3 optical constants extracted from ultra-smooth perovskite layers without air exposure and assign all the optical transitions in the visible/ultraviolet region unambiguously based on density functional theory (DFT) an alysis that assumes a simple pseudo-cubic crystal structure. From the self-consistent spectroscopic ellipsometry analysis of the ultra-smooth CH3NH3PbI3 layers, we find that the absorption coefficients of CH3NH3PbI3 (alpha = 3.8 x 10^4 cm-1 at 2.0 eV) are comparable to those of CuInGaSe2 and CdTe, and high alpha values reported in earlier studies are overestimated seriously by extensive surface roughness of CH3NH3PbI3 layers. The polarization-dependent DFT calculations show that CH3NH3+ interacts strongly with the PbI3- cage, modifying the CH3NH3PbI3 dielectric function in the visible region rather significantly. When the effect of CH3NH3+ on the optical transition is eliminated in the DFT calculation, CH3NH3PbI3 dielectric function deduced from DFT shows excellent agreement with the experimental result. As a result, distinct optical transitions observed at E0 (Eg) = 1.61 eV, E1 = 2.53 eV, and E2 = 3.24 eV in CH3NH3PbI3 are attributed to the direct semiconductor-type transitions at the R, M, and X points in the pseudo-cubic Brillouin zone, respectively. We further perform the quantum efficiency (QE) analysis for a standard hybrid-perovskite solar cell incorporating a mesoporous TiO2 layer and demonstrate that the QE spectrum can be reproduced almost perfectly when the revised CH3NH3PbI3 optical constants are employed. Depth-resolved QE simulations confirm that Jsc is limited by the materials longer wavelength response and indicate the importance of optical confinement and long carrier diffusion lengths in hybrid perovskite solar cells.
Using a super-operator formulation of linearized time-dependent density-functional theory, the dynamical polarizability of a system of interacting electrons is given a matrix continued-fraction representation whose coefficients can be obtained from t he non-symmetric block-Lanczos method. The resulting algorithm allows for the calculation of the {em full spectrum} of a system with a computational workload which is only a few times larger than that needed for {em static} polarizabilities within time-independent density-functional perturbation theory. The method is demonstrated with the calculation of the spectrum of benzene, and prospects for its application to the large-scale calculation of optical spectra are discussed.
The hyperfine interaction is an important probe for understanding the structure and symmetry of defects in a semiconductor. Density-functional theory has shown that it can provide useful first-principles predictions for both the hyperfine tensor and the hyperfine constants that arise from it. Recently there has been great interest in using group-IV impurity-vacancy color centers X$V^-$ (where X = Si, Ge, Sn, or Pb and $V$ is a carbon vacancy) for important applications in quantum computing and quantum information science. In this paper, we have calculated the hyperfine tensors for these X$V^-$ color centers using the HSE06 screened Hartree-Fock hybrid exchange-correlation functional with the inclusion of core electron spin polarization. We have compared our results to calculations which only use the PBE exchange-correlation functional without the inclusion of core electron spin polarization and we have found our results are in very good agreement with available experimental results. Finally, we have theoretically shown that these X$V^-$ color centers exhibit a Jahn-Teller distortion which explains the observed anisotropic distribution of the hyperfine constants among the neighboring $^{13}$C nuclear spins.
We investigate optical absorption spectra obtained through time-dependent density functional theory (TD-DFT) based on nonempirical hybrid functionals that are designed to correctly reproduce the dielectric function. The comparison with state-of-the-a rt $GW$ calculations followed by the solution of the Bethe-Sapeter equation (BSE-$GW$) shows close agreement for both the transition energies and the main features of the spectra. We confront TD-DFT with BSE-$GW$ by focusing on the model dielectric function and the local exchange-correlation kernel. The present TD-DFT approach achieves the accuracy of BSE-$GW$ at a fraction of the computational cost.
We present theoretical evidence for local magnetic moments on Ti3+ ions in oxygen-deficient anatase and rutile TiO2 observed in a recent experiment [S. Zhou, et al., Phys. Rev. B 79, 113201 (2009)]. Results of our first-principles GGA+U calculations reveal that an oxygen vacancy converts two Ti4+ ions to two Ti3+ ions in anatase phase, which results in a local magnetic moment of 1.0 $mu_B$ per Ti3+. The two Ti3+ ions, however, form a stable antiferromagnetic state, and similar antiferromagnetism is also observed in oxygen-deficient rutile phase TiO2. The calculated results are in good agreement with the experimentally observed antiferromagnetic-like behavior in oxygen-deficient Ti-O systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا