ترغب بنشر مسار تعليمي؟ اضغط هنا

Evading Thermodynamic Uncertainty Relations via Asymmetric Dynamic Protocols

139   0   0.0 ( 0 )
 نشر من قبل Mingnan Ding
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ma



قيم البحث

اقرأ أيضاً

We introduce a new technique to bound the fluctuations exhibited by a physical system, based on the Euclidean geometry of the space of observables. Through a simple unifying argument, we derive a sweeping generalization of so-called Thermodynamic Unc ertainty Relations (TURs). We not only strengthen the bounds but extend their realm of applicability and in many cases prove their optimality, without resorting to large deviation theory or information-theoretic techniques. In particular, we find the best TUR based on entropy production alone and also derive a novel bound for stationary Markov processes, which surpasses previous known bounds. Our results derive from the non-invariance of the system under a symmetry which can be other than time reversal and thus open a wide new spectrum of applications.
The thermodynamic uncertainty relation (TUR) for underdamped dynamics has intriguing problems while its counterpart for overdamped dynamics has recently been derived. Even for the case of steady states, a proper way to match underdamped and overdampe d TURs has not been found. We derive the TUR for underdamped systems subject to general time-dependent protocols, that covers steady states, by using the Cram{e}r-Rao inequality. We show the resultant TUR to give rise to the inequality of the product of the variance and entropy production. We prove it to approach to the known overdamped result for large viscosity limit. We present three examples to confirm our rigorous result.
152 - Gianluca Francica 2021
Fluctuation theorems are fundamental results in non-equilibrium thermodynamics. Considering the fluctuation theorem with respect to the entropy production and an observable, we derive a new thermodynamic uncertainty relation which also applies to non-cyclic and time-reversal non-symmetric protocols.
79 - Yunxin Zhang 2019
In recent letter [Phys.~Rev.~Lett {bf 123}, 110602 (2019)], Y.~Hasegawa and T.~V.~Vu derived a thermodynamic uncertainty relation. But the bound of their relation is loose. In this comment, through minor changes, an improved bound is obtained. This i mproved bound is the same as the one obtained in [Phys.~Rev.~Lett {bf 123}, 090604 (2019)] by A.~M.~Timpanaro {it et. al.}, but the derivation here is straightforward.
163 - L. Velazquez , S. Curilef 2009
Recently, we have presented some simple arguments supporting the existence of certain complementarity between thermodynamic quantities of temperature and energy, an idea suggested by Bohr and Heinsenberg in the early days of Quantum Mechanics. Such a complementarity is expressed as the impossibility of perform an exact simultaneous determination of the system energy and temperature by using an experimental procedure based on the thermal equilibrium with other system regarded as a measure apparatus (thermometer). In this work, we provide a simple generalization of this latter approach with the consideration of a thermodynamic situation with several control parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا