ﻻ يوجد ملخص باللغة العربية
We introduce a new technique to bound the fluctuations exhibited by a physical system, based on the Euclidean geometry of the space of observables. Through a simple unifying argument, we derive a sweeping generalization of so-called Thermodynamic Uncertainty Relations (TURs). We not only strengthen the bounds but extend their realm of applicability and in many cases prove their optimality, without resorting to large deviation theory or information-theoretic techniques. In particular, we find the best TUR based on entropy production alone and also derive a novel bound for stationary Markov processes, which surpasses previous known bounds. Our results derive from the non-invariance of the system under a symmetry which can be other than time reversal and thus open a wide new spectrum of applications.
Fluctuation theorems are fundamental results in non-equilibrium thermodynamics. Considering the fluctuation theorem with respect to the entropy production and an observable, we derive a new thermodynamic uncertainty relation which also applies to non-cyclic and time-reversal non-symmetric protocols.
In recent letter [Phys.~Rev.~Lett {bf 123}, 110602 (2019)], Y.~Hasegawa and T.~V.~Vu derived a thermodynamic uncertainty relation. But the bound of their relation is loose. In this comment, through minor changes, an improved bound is obtained. This i
Recently, we have presented some simple arguments supporting the existence of certain complementarity between thermodynamic quantities of temperature and energy, an idea suggested by Bohr and Heinsenberg in the early days of Quantum Mechanics. Such a
Thermodynamic uncertainty relation (TUR) provides a stricter bound for entropy production (EP) than that of the thermodynamic second law. This stricter bound can be utilized to infer the EP and derive other trade-off relations. Though the validity of