ﻻ يوجد ملخص باللغة العربية
The thermodynamic uncertainty relation (TUR) for underdamped dynamics has intriguing problems while its counterpart for overdamped dynamics has recently been derived. Even for the case of steady states, a proper way to match underdamped and overdamped TURs has not been found. We derive the TUR for underdamped systems subject to general time-dependent protocols, that covers steady states, by using the Cram{e}r-Rao inequality. We show the resultant TUR to give rise to the inequality of the product of the variance and entropy production. We prove it to approach to the known overdamped result for large viscosity limit. We present three examples to confirm our rigorous result.
Recently, it has been shown that there is a trade-off relation between thermodynamic cost and current fluctuations, referred to as the thermodynamic uncertainty relation (TUR). The TUR has been derived for various processes, such as discrete-time Mar
Thermodynamic uncertainty relation (TUR) provides a stricter bound for entropy production (EP) than that of the thermodynamic second law. This stricter bound can be utilized to infer the EP and derive other trade-off relations. Though the validity of
For systems in an externally controllable time-dependent potential, the optimal protocol minimizes the mean work spent in a finite-time transition between two given equilibrium states. For overdamped dynamics which ignores inertia effects, the optima
We show that the dissipation rate bounds the rate at which physical processes can be performed in stochastic systems far from equilibrium. Namely, for rare processes we prove the fundamental tradeoff $langle dot S_text{e} rangle mathcal{T} geq k_{tex