ﻻ يوجد ملخص باللغة العربية
Assuming time-scale separation, a simple and unified theory of thermodynamics and stochastic thermodynamics is constructed for small classical systems strongly interacting with its environment in a controllable fashion. The total Hamiltonian is decomposed into a bath part and a system part, the latter being the Hamiltonian of mean force. Both the conditional equilibrium of bath and the reduced equilibrium of the system are described by canonical ensemble theories with respect to their own Hamiltonians. The bath free energy is independent of the system variables and the control parameter. Furthermore, the weak coupling theory of stochastic thermodynamics becomes applicable almost verbatim, even if the interaction and correlation between the system and its environment are strong and varied externally. Finally, this TSS-based approach also leads to some new insights about the origin of the second law of thermodynamics.
One of the major resource requirements of computers - ranging from biological cells to human brains to high-performance (engineered) computers - is the energy used to run them. Those costs of performing a computation have long been a focus of researc
The ribosome is one of the largest and most complex macromolecular machines in living cells. It polymerizes a protein in a step-by-step manner as directed by the corresponding nucleotide sequence on the template messenger RNA (mRNA) and this process
We apply the stochastic thermodynamics formalism to describe the dynamics of systems of complex Langevin and Fokker-Planck equations. We provide in particular a simple and general recipe to calculate thermodynamical currents, dissipated and propagati
A fluctuation relation is derived to extract the order parameter function $q(x)$ in weakly ergodic systems. The relation is based on measuring and classifying entropy production fluctuations according to the value of the overlap $q$ between configura
I give a quick overview of some of the theoretical background necessary for using modern non-equilibrium statistical physics to investigate the thermodynamics of computation. I first present some of the necessary concepts from information theory, and