ﻻ يوجد ملخص باللغة العربية
I give a quick overview of some of the theoretical background necessary for using modern non-equilibrium statistical physics to investigate the thermodynamics of computation. I first present some of the necessary concepts from information theory, and then introduce some of the most important types of computational machine considered in computer science theory. After this I present a central result from modern non-equilibrium statistical physics: an exact expression for the entropy flow out of a system undergoing a given dynamics with a given initial distribution over states. This central expression is crucial for analyzing how the total entropy flow out of a computer depends on its global structure, since that global structure determines the initial distributions into all of the computers subsystems, and therefore (via the central expression) the entropy flows generated by all of those subsystems. I illustrate these results by analyzing some of the subtleties concerning the benefits that are sometimes claimed for implementing an irreversible computation with a reversible circuit constructed out of Fredkin gates.
One of the major resource requirements of computers - ranging from biological cells to human brains to high-performance (engineered) computers - is the energy used to run them. Those costs of performing a computation have long been a focus of researc
One of the primary motivations of the research in the field of computation is to optimize the cost of computation. The major ingredient that a computer needs is the energy to run a process, i.e., the thermodynamic cost. The analysis of the thermodyna
We apply the stochastic thermodynamics formalism to describe the dynamics of systems of complex Langevin and Fokker-Planck equations. We provide in particular a simple and general recipe to calculate thermodynamical currents, dissipated and propagati
Assuming time-scale separation, a simple and unified theory of thermodynamics and stochastic thermodynamics is constructed for small classical systems strongly interacting with its environment in a controllable fashion. The total Hamiltonian is decom
Thermodynamic observables of mesoscopic systems can be expressed as integrated empirical currents. Their fluctuations are bound by thermodynamic uncertainty relations. We introduce the hyperaccurate current as the integrated empirical current with th