ﻻ يوجد ملخص باللغة العربية
A fluctuation relation is derived to extract the order parameter function $q(x)$ in weakly ergodic systems. The relation is based on measuring and classifying entropy production fluctuations according to the value of the overlap $q$ between configurations. For a fixed value of $q$, entropy production fluctuations are Gaussian distributed allowing us to derive the quasi-FDT so characteristic of aging systems. The theory is validated by extracting the $q(x)$ in various types of glassy models. It might be generally applicable to other nonequilibrium systems and experimental small systems.
We consider the probability distribution for fluctuations in dynamical action and similar quantities related to dynamic heterogeneity. We argue that the so-called glass transition is a manifestation of low action tails in these distributions where th
It has been shown recently that predictions from Mode-Coupling Theory for the glass transition of hard-spheres become increasingly bad when dimensionality increases, whereas replica theory predicts a correct scaling. Nevertheless if one focuses on th
Assuming time-scale separation, a simple and unified theory of thermodynamics and stochastic thermodynamics is constructed for small classical systems strongly interacting with its environment in a controllable fashion. The total Hamiltonian is decom
One of the major resource requirements of computers - ranging from biological cells to human brains to high-performance (engineered) computers - is the energy used to run them. Those costs of performing a computation have long been a focus of researc
We present a stochastic thermodynamics analysis of an electron-spin-resonance pumped quantum dot device in the Coulomb-blocked regime, where a pure spin current is generated without an accompanying net charge current. Based on a generalized quantum m