ترغب بنشر مسار تعليمي؟ اضغط هنا

A Stochastic Alternating Balance $k$-Means Algorithm for Fair Clustering

144   0   0.0 ( 0 )
 نشر من قبل Suyun Liu
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

In the application of data clustering to human-centric decision-making systems, such as loan applications and advertisement recommendations, the clustering outcome might discriminate against people across different demographic groups, leading to unfairness. A natural conflict occurs between the cost of clustering (in terms of distance to cluster centers) and the balance representation of all demographic groups across the clusters, leading to a bi-objective optimization problem that is nonconvex and nonsmooth. To determine the complete trade-off between these two competing goals, we design a novel stochastic alternating balance fair $k$-means (SAfairKM) algorithm, which consists of alternating classical mini-batch $k$-means updates and group swap updates. The number of $k$-means updates and the number of swap updates essentially parameterize the weight put on optimizing each objective function. Our numerical experiments show that the proposed SAfairKM algorithm is robust and computationally efficient in constructing well-spread and high-quality Pareto fronts both on synthetic and real datasets. Moreover, we propose a novel companion algorithm, the stochastic alternating bi-objective gradient descent (SA2GD) algorithm, which can handle a smooth version of the considered bi-objective fair $k$-means problem, more amenable for analysis. A sublinear convergence rate of $mathcal{O}(1/T)$ is established under strong convexity for the determination of a stationary point of a weighted sum of the two functions parameterized by the number of steps or updates on each function.



قيم البحث

اقرأ أيضاً

101 - Nicolas Fraiman , Zichao Li 2020
Biclustering is the task of simultaneously clustering the rows and columns of the data matrix into different subgroups such that the rows and columns within a subgroup exhibit similar patterns. In this paper, we consider the case of producing block-d iagonal biclusters. We provide a new formulation of the biclustering problem based on the idea of minimizing the empirical clustering risk. We develop and prove a consistency result with respect to the empirical clustering risk. Since the optimization problem is combinatorial in nature, finding the global minimum is computationally intractable. In light of this fact, we propose a simple and novel algorithm that finds a local minimum by alternating the use of an adapted version of the k-means clustering algorithm between columns and rows. We evaluate and compare the performance of our algorithm to other related biclustering methods on both simulated data and real-world gene expression data sets. The results demonstrate that our algorithm is able to detect meaningful structures in the data and outperform other competing biclustering methods in various settings and situations.
89 - Carlo Baldassi 2019
We present a simple heuristic algorithm for efficiently optimizing the notoriously hard minimum sum-of-squares clustering problem, usually addressed by the classical k-means heuristic and its variants. The algorithm, called recombinator-k-means, is v ery similar to a genetic algorithmic scheme: it uses populations of configurations, that are optimized independently in parallel and then recombined in a next-iteration population batch by exploiting a variant of the k-means++ seeding algorithm. An additional reweighting mechanism ensures that the population eventually coalesces into a single solution. Extensive tests measuring optimization objective vs computational time on synthetic and real-word data show that it is the only choice, among state-of-the-art alternatives (simple restarts, random swap, genetic algorithm with pairwise-nearest-neighbor crossover), that consistently produces good results at all time scales, outperforming competitors on large and complicated datasets. The only parameter that requires tuning is the population size. The scheme is rather general (it could be applied even to k-medians or k-medoids, for example). Our implementation is publicly available at https://github.com/carlobaldassi/RecombinatorKMeans.jl.
We address the problem of simultaneously learning a k-means clustering and deep feature representation from unlabelled data, which is of interest due to the potential of deep k-means to outperform traditional two-step feature extraction and shallow-c lustering strategies. We achieve this by developing a gradient-estimator for the non-differentiable k-means objective via the Gumbel-Softmax reparameterisation trick. In contrast to previous attempts at deep clustering, our concrete k-means model can be optimised with respect to the canonical k-means objective and is easily trained end-to-end without resorting to alternating optimisation. We demonstrate the efficacy of our method on standard clustering benchmarks.
We study fair clustering problems as proposed by Chierichetti et al. (NIPS 2017). Here, points have a sensitive attribute and all clusters in the solution are required to be balanced with respect to it (to counteract any form of data-inherent bias). Previous algorithms for fair clustering do not scale well. We show how to model and compute so-called coresets for fair clustering problems, which can be used to significantly reduce the input data size. We prove that the coresets are composable and show how to compute them in a streaming setting. Furthermore, we propose a variant of Lloyds algorithm that computes fair clusterings and extend it to a fair k-means++ clustering algorithm. We implement these algorithms and provide empirical evidence that the combination of our approximation algorithms and the coreset construction yields a scalable algorithm for fair k-means clustering.
$k$-means algorithm is one of the most classical clustering methods, which has been widely and successfully used in signal processing. However, due to the thin-tailed property of the Gaussian distribution, $k$-means algorithm suffers from relatively poor performance on the dataset containing heavy-tailed data or outliers. Besides, standard $k$-means algorithm also has relatively weak stability, $i.e.$ its results have a large variance, which reduces its credibility. In this paper, we propose a robust and stable $k$-means variant, dubbed the $t$-$k$-means, as well as its fast version to alleviate those problems. Theoretically, we derive the $t$-$k$-means and analyze its robustness and stability from the aspect of the loss function and the expression of the clustering center, respectively. Extensive experiments are also conducted, which verify the effectiveness and efficiency of the proposed method. The code for reproducing main results is available at url{https://github.com/THUYimingLi/t-k-means}.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا