ترغب بنشر مسار تعليمي؟ اضغط هنا

Fair Coresets and Streaming Algorithms for Fair k-Means Clustering

138   0   0.0 ( 0 )
 نشر من قبل Chris Schwiegelshohn
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study fair clustering problems as proposed by Chierichetti et al. (NIPS 2017). Here, points have a sensitive attribute and all clusters in the solution are required to be balanced with respect to it (to counteract any form of data-inherent bias). Previous algorithms for fair clustering do not scale well. We show how to model and compute so-called coresets for fair clustering problems, which can be used to significantly reduce the input data size. We prove that the coresets are composable and show how to compute them in a streaming setting. Furthermore, we propose a variant of Lloyds algorithm that computes fair clusterings and extend it to a fair k-means++ clustering algorithm. We implement these algorithms and provide empirical evidence that the combination of our approximation algorithms and the coreset construction yields a scalable algorithm for fair k-means clustering.

قيم البحث

اقرأ أيضاً

We present an $(e^{O(p)} frac{log ell}{loglogell})$-approximation algorithm for socially fair clustering with the $ell_p$-objective. In this problem, we are given a set of points in a metric space. Each point belongs to one (or several) of $ell$ grou ps. The goal is to find a $k$-medians, $k$-means, or, more generally, $ell_p$-clustering that is simultaneously good for all of the groups. More precisely, we need to find a set of $k$ centers $C$ so as to minimize the maximum over all groups $j$ of $sum_{u text{ in group }j} d(u,C)^p$. The socially fair clustering problem was independently proposed by Ghadiri, Samadi, and Vempala [2021] and Abbasi, Bhaskara, and Venkatasubramanian [2021]. Our algorithm improves and generalizes their $O(ell)$-approximation algorithms for the problem. The natural LP relaxation for the problem has an integrality gap of $Omega(ell)$. In order to obtain our result, we introduce a strengthened LP relaxation and show that it has an integrality gap of $Theta(frac{log ell}{loglogell})$ for a fixed $p$. Additionally, we present a bicriteria approximation algorithm, which generalizes the bicriteria approximation of Abbasi et al. [2021].
We consider the $k$-clustering problem with $ell_p$-norm cost, which includes $k$-median, $k$-means and $k$-center cost functions, under an individual notion of fairness proposed by Jung et al. [2020]: given a set of points $P$ of size $n$, a set of $k$ centers induces a fair clustering if for every point $vin P$, $v$ can find a center among its $n/k$ closest neighbors. Recently, Mahabadi and Vakilian [2020] showed how to get a $(p^{O(p)},7)$-bicriteria approximation for the problem of fair $k$-clustering with $ell_p$-norm cost: every point finds a center within distance at most $7$ times its distance to its $(n/k)$-th closest neighbor and the $ell_p$-norm cost of the solution is at most $p^{O(p)}$ times the cost of an optimal fair solution. In this work, for any $varepsilon>0$, we present an improved $(16^p +varepsilon,3)$-bicriteria approximation for the fair $k$-clustering with $ell_p$-norm cost. To achieve our guarantees, we extend the framework of [Charikar et al., 2002, Swamy, 2016] and devise a $16^p$-approximation algorithm for the facility location with $ell_p$-norm cost under matroid constraint which might be of an independent interest. Besides, our approach suggests a reduction from our individually fair clustering to a clustering with a group fairness requirement proposed by Kleindessner et al. [2019], which is essentially the median matroid problem [Krishnaswamy et al., 2011].
In the application of data clustering to human-centric decision-making systems, such as loan applications and advertisement recommendations, the clustering outcome might discriminate against people across different demographic groups, leading to unfa irness. A natural conflict occurs between the cost of clustering (in terms of distance to cluster centers) and the balance representation of all demographic groups across the clusters, leading to a bi-objective optimization problem that is nonconvex and nonsmooth. To determine the complete trade-off between these two competing goals, we design a novel stochastic alternating balance fair $k$-means (SAfairKM) algorithm, which consists of alternating classical mini-batch $k$-means updates and group swap updates. The number of $k$-means updates and the number of swap updates essentially parameterize the weight put on optimizing each objective function. Our numerical experiments show that the proposed SAfairKM algorithm is robust and computationally efficient in constructing well-spread and high-quality Pareto fronts both on synthetic and real datasets. Moreover, we propose a novel companion algorithm, the stochastic alternating bi-objective gradient descent (SA2GD) algorithm, which can handle a smooth version of the considered bi-objective fair $k$-means problem, more amenable for analysis. A sublinear convergence rate of $mathcal{O}(1/T)$ is established under strong convexity for the determination of a stationary point of a weighted sum of the two functions parameterized by the number of steps or updates on each function.
We give a new construction for a small space summary satisfying the coreset guarantee of a data set with respect to the $k$-means objective function. The number of points required in an offline construction is in $tilde{O}(k epsilon^{-2}min(d,kepsilo n^{-2}))$ which is minimal among all available constructions. Aside from two constructions with exponential dependence on the dimension, all known coresets are maintained in data streams via the merge and reduce framework, which incurs are large space dependency on $log n$. Instead, our construction crucially relies on Johnson-Lindenstrauss type embeddings which combined with results from online algorithms give us a new technique for efficiently maintaining coresets in data streams without relying on merge and reduce. The final number of points stored by our algorithm in a data stream is in $tilde{O}(k^2 epsilon^{-2} log^2 n min(d,kepsilon^{-2}))$.
This paper considers $k$-means clustering in the presence of noise. It is known that $k$-means clustering is highly sensitive to noise, and thus noise should be removed to obtain a quality solution. A popular formulation of this problem is called $k$ -means clustering with outliers. The goal of $k$-means clustering with outliers is to discard up to a specified number $z$ of points as noise/outliers and then find a $k$-means solution on the remaining data. The problem has received significant attention, yet current algorithms with theoretical guarantees suffer from either high running time or inherent loss in the solution quality. The main contribution of this paper is two-fold. Firstly, we develop a simple greedy algorithm that has provably strong worst case guarantees. The greedy algorithm adds a simple preprocessing step to remove noise, which can be combined with any $k$-means clustering algorithm. This algorithm gives the first pseudo-approximation-preserving reduction from $k$-means with outliers to $k$-means without outliers. Secondly, we show how to construct a coreset of size $O(k log n)$. When combined with our greedy algorithm, we obtain a scalable, near linear time algorithm. The theoretical contributions are verified experimentally by demonstrating that the algorithm quickly removes noise and obtains a high-quality clustering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا