ترغب بنشر مسار تعليمي؟ اضغط هنا

Controllable Abstractive Dialogue Summarization with Sketch Supervision

314   0   0.0 ( 0 )
 نشر من قبل Chien-Sheng Wu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we aim to improve abstractive dialogue summarization quality and, at the same time, enable granularity control. Our model has two primary components and stages: 1) a two-stage generation strategy that generates a preliminary summary sketch serving as the basis for the final summary. This summary sketch provides a weakly supervised signal in the form of pseudo-labeled interrogative pronoun categories and key phrases extracted using a constituency parser. 2) A simple strategy to control the granularity of the final summary, in that our model can automatically determine or control the number of generated summary sentences for a given dialogue by predicting and highlighting different text spans from the source text. Our model achieves state-of-the-art performance on the largest dialogue summarization corpus SAMSum, with as high as 50.79 in ROUGE-L score. In addition, we conduct a case study and show competitive human evaluation results and controllability to human-annotated summaries.



قيم البحث

اقرأ أيضاً

Unlike well-structured text, such as news reports and encyclopedia articles, dialogue content often comes from two or more interlocutors, exchanging information with each other. In such a scenario, the topic of a conversation can vary upon progressio n and the key information for a certain topic is often scattered across multiple utterances of different speakers, which poses challenges to abstractly summarize dialogues. To capture the various topic information of a conversation and outline salient facts for the captured topics, this work proposes two topic-aware contrastive learning objectives, namely coherence detection and sub-summary generation objectives, which are expected to implicitly model the topic change and handle information scattering challenges for the dialogue summarization task. The proposed contrastive objectives are framed as auxiliary tasks for the primary dialogue summarization task, united via an alternative parameter updating strategy. Extensive experiments on benchmark datasets demonstrate that the proposed simple method significantly outperforms strong baselines and achieves new state-of-the-art performance. The code and trained models are publicly available via href{https://github.com/Junpliu/ConDigSum}{https://github.com/Junpliu/ConDigSum}.
We propose a new length-controllable abstractive summarization model. Recent state-of-the-art abstractive summarization models based on encoder-decoder models generate only one summary per source text. However, controllable summarization, especially of the length, is an important aspect for practical applications. Previous studies on length-controllable abstractive summarization incorporate length embeddings in the decoder module for controlling the summary length. Although the length embeddings can control where to stop decoding, they do not decide which information should be included in the summary within the length constraint. Unlike the previous models, our length-controllable abstractive summarization model incorporates a word-level extractive module in the encoder-decoder model instead of length embeddings. Our model generates a summary in two steps. First, our word-level extractor extracts a sequence of important words (we call it the prototype text) from the source text according to the word-level importance scores and the length constraint. Second, the prototype text is used as additional input to the encoder-decoder model, which generates a summary by jointly encoding and copying words from both the prototype text and source text. Since the prototype text is a guide to both the content and length of the summary, our model can generate an informative and length-controlled summary. Experiments with the CNN/Daily Mail dataset and the NEWSROOM dataset show that our model outperformed previous models in length-controlled settings.
High-quality dialogue-summary paired data is expensive to produce and domain-sensitive, making abstractive dialogue summarization a challenging task. In this work, we propose the first unsupervised abstractive dialogue summarization model for tete-a- tetes (SuTaT). Unlike standard text summarization, a dialogue summarization method should consider the multi-speaker scenario where the speakers have different roles, goals, and language styles. In a tete-a-tete, such as a customer-agent conversation, SuTaT aims to summarize for each speaker by modeling the customer utterances and the agent utterances separately while retaining their correlations. SuTaT consists of a conditional generative module and two unsupervised summarization modules. The conditional generative module contains two encoders and two decoders in a variational autoencoder framework where the dependencies between two latent spaces are captured. With the same encoders and decoders, two unsupervised summarization modules equipped with sentence-level self-attention mechanisms generate summaries without using any annotations. Experimental results show that SuTaT is superior on unsupervised dialogue summarization for both automatic and human evaluations, and is capable of dialogue classification and single-turn conversation generation.
Recent years have brought about an interest in the challenging task of summarizing conversation threads (meetings, online discussions, etc.). Such summaries help analysis of the long text to quickly catch up with the decisions made and thus improve o ur work or communication efficiency. To spur research in thread summarization, we have developed an abstractive Email Thread Summarization (EmailSum) dataset, which contains human-annotated short (<30 words) and long (<100 words) summaries of 2549 email threads (each containing 3 to 10 emails) over a wide variety of topics. We perform a comprehensive empirical study to explore different summarization techniques (including extractive and abstractive methods, single-document and hierarchical models, as well as transfer and semisupervised learning) and conduct human evaluations on both short and long summary generation tasks. Our results reveal the key challenges of current abstractive summarization models in this task, such as understanding the senders intent and identifying the roles of sender and receiver. Furthermore, we find that widely used automatic evaluation metrics (ROUGE, BERTScore) are weakly correlated with human judgments on this email thread summarization task. Hence, we emphasize the importance of human evaluation and the development of better metrics by the community. Our code and summary data have been made available at: https://github.com/ZhangShiyue/EmailSum
Pre-trained language models have recently advanced abstractive summarization. These models are further fine-tuned on human-written references before summary generation in test time. In this work, we propose the first application of transductive learn ing to summarization. In this paradigm, a model can learn from the test sets input before inference. To perform transduction, we propose to utilize input document summarizing sentences to construct references for learning in test time. These sentences are often compressed and fused to form abstractive summaries and provide omitted details and additional context to the reader. We show that our approach yields state-of-the-art results on CNN/DM and NYT datasets. For instance, we achieve over 1 ROUGE-L point improvement on CNN/DM. Further, we show the benefits of transduction from older to more recent news. Finally, through human and automatic evaluation, we show that our summaries become more abstractive and coherent.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا