ﻻ يوجد ملخص باللغة العربية
Pre-trained language models have recently advanced abstractive summarization. These models are further fine-tuned on human-written references before summary generation in test time. In this work, we propose the first application of transductive learning to summarization. In this paradigm, a model can learn from the test sets input before inference. To perform transduction, we propose to utilize input document summarizing sentences to construct references for learning in test time. These sentences are often compressed and fused to form abstractive summaries and provide omitted details and additional context to the reader. We show that our approach yields state-of-the-art results on CNN/DM and NYT datasets. For instance, we achieve over 1 ROUGE-L point improvement on CNN/DM. Further, we show the benefits of transduction from older to more recent news. Finally, through human and automatic evaluation, we show that our summaries become more abstractive and coherent.
Unlike well-structured text, such as news reports and encyclopedia articles, dialogue content often comes from two or more interlocutors, exchanging information with each other. In such a scenario, the topic of a conversation can vary upon progressio
Abstractive summarization, the task of generating a concise summary of input documents, requires: (1) reasoning over the source document to determine the salient pieces of information scattered across the long document, and (2) composing a cohesive t
In this paper, we study abstractive summarization for open-domain videos. Unlike the traditional text news summarization, the goal is less to compress text information but rather to provide a fluent textual summary of information that has been collec
Neural abstractive summarization systems have achieved promising progress, thanks to the availability of large-scale datasets and models pre-trained with self-supervised methods. However, ensuring the factual consistency of the generated summaries fo
Recent years have brought about an interest in the challenging task of summarizing conversation threads (meetings, online discussions, etc.). Such summaries help analysis of the long text to quickly catch up with the decisions made and thus improve o