ترغب بنشر مسار تعليمي؟ اضغط هنا

InGaP quantum nanophotonic integrated circuits with 1.5% second-order nonlinearity

120   0   0.0 ( 0 )
 نشر من قبل Kejie Fang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Optical nonlinearity plays a pivotal role in quantum information processing using photons, from heralded single-photon sources to long-sought quantum repeaters. Despite the availability of strong light-atom interaction, an all-optical nonlinearity is highly desired for more scalable quantum protocols. Here, we realize quantum nanophotonic integrated circuits in thin-film InGaP with a record-high second-order optical nonlinearity of $1.5%$---the ratio of the single-photon trimodal coupling strength ($g/2pi=11.2$ MHz) and cavity-photon loss rate. We demonstrate photon-pair generation via degenerate spontaneous parametric down conversion in the InGaP photonic circuit with an ultrahigh rate exceeding 27.5 MHz per 1 $mu$W pump power and large coincidence-to-accidental ratio up to $1.4times 10^4$. Our work shows InGaP as a potentially transcending platform for quantum nonlinear optics and quantum information applications.

قيم البحث

اقرأ أيضاً

Monolayer transition metal dichalcogenides with direct bandgaps are emerging candidates for microelectronics, nano-photonics, and optoelectronics. Transferred onto photonic integrated circuits (PICs), these semiconductor materials have enabled new cl asses of light-emitting diodes, modulators and photodetectors, that could be amenable to wafer-scale manufacturing. For integrated photonic devices, the optical losses of the PICs are critical. In contrast to silicon, silicon nitride (Si3N4) has emerged as a low-loss integrated platform with a wide transparency window from ultraviolet to mid-infrared and absence of two-photon absorption at telecommunication bands. Moreover, it is suitable for nonlinear integrated photonics due to its high Kerr nonlinearity and high-power handing capability. These features of Si3N4 are intrinsically beneficial for nanophotonics and optoelectronics applications. Here we report a low-loss integrated platform incorporating monolayer molybdenum ditelluride (1L-MoTe2) with Si3N4 photonic microresonators. We show that, with the 1L-MoTe2, microresonator quality factors exceeding 3 million in the telecommunication O-band to E-band are maintained. We further investigate the change of microresonator dispersion and resonance shift due to the presence of 1L-MoTe2, and extrapolate the optical loss introduced by 1L-MoTe2 in the telecommunication bands, out of the excitonic transition region. Our work presents a key step for low-loss, hybrid PICs with layered semiconductors without using heterogeneous wafer bonding.
Diamond integrated photonic devices are promising candidates for emerging applications in nanophotonics and quantum optics. Here we demonstrate active modulation of diamond nanophotonic circuits by exploiting mechanical degrees of freedom in free-sta nding diamond electro-optomechanical resonators. We obtain high quality factors up to 9600, allowing us to read out the driven nanomechanical response with integrated optical interferometers with high sensitivity. We are able to excite higher order mechanical modes up to 115 MHz and observe the nanomechanical response also under ambient conditions.
Nonlinear processes are at the core of many optical technologies including lasers, information processing, sensing, and security, and require optimised materials suitable for nanoscale integration. Here we demonstrate the emergence of a strong bulk s econd-order nonlinear response in a composite plasmonic nanorod material comprised of centrosymmetric materials. The metamaterial provides equally strong generation of the p-polarized second harmonic light in response to both s- and p-polarized excitation. We develop an effective-medium description of the underlying physics, compare its predictions to the experimental results and analyze the limits of its applicability. We show that while the effective medium theory adequately describes the nonlinear polarization, the process of emission of second harmonic light cannot be described in the same framework. The work provides an understanding of the emergent nonlinear optical response in composites and opens a doorway to new nonlinear optical platform designs for integrated nonlinear photonics.
We propose the use of nanostructured photonic nanocavities made of second-order nonlinear materials as prospective passive devices to generate strongly sub-Poissonian light via single-photon blockade of an input coherent field. The simplest scheme is based on the requirement that the nanocavity be doubly resonant, i.e. possess cavity modes with good spatial overlap at both the fundamental and second-harmonic frequencies. We discuss feasibility of this scheme with state-of-the art nanofabrication technology, and the possibility to use it as a passive single-photon source on-demand.
We report on the fabrication and metrology of superconducting caps for qubit circuits. As part of a 3D quantum integrated circuit architecture, a cap chip forms the upper half of an enclosure that provides isolation, increases vacuum participation ra tio, and improves performance of individual resonant elements. Here, we demonstrate that such caps can be reliably fabricated, placed on a circuit chip, and form superconducting connections to the circuit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا