ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconducting Caps for Quantum Integrated Circuits

120   0   0.0 ( 0 )
 نشر من قبل Mehrnoosh Vahidpour
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the fabrication and metrology of superconducting caps for qubit circuits. As part of a 3D quantum integrated circuit architecture, a cap chip forms the upper half of an enclosure that provides isolation, increases vacuum participation ratio, and improves performance of individual resonant elements. Here, we demonstrate that such caps can be reliably fabricated, placed on a circuit chip, and form superconducting connections to the circuit.



قيم البحث

اقرأ أيضاً

We describe a microfabrication process for superconducting through-silicon vias appropriate for use in superconducting qubit quantum processors. With a sloped-wall via geometry, we can use non-conformal metal deposition methods such as electron-beam evaporation and sputtering, which reliably deposit high quality superconducting films. Via superconductivity is validated by demonstrating zero via-to-via resistance below the critical temperature of aluminum.
Epitaxially-grown superconductor/dielectric/superconductor trilayers have the potential to form high-performance superconducting quantum devices and may even allow scalable superconducting quantum computing with low-surface-area qubits such as the me rged-element transmon. In this work, we measure the power-independent loss and two-level-state (TLS) loss of epitaxial, wafer-bonded, and substrate-removed Al/GaAs/Al trilayers by measuring lumped element superconducting microwave resonators at millikelvin temperatures and down to single photon powers. The power-independent loss of the device is $(4.8 pm 0.1) times 10^{-5}$ and resonator-induced intrinsic TLS loss is $(6.4 pm 0.2) times 10^{-5}$. Dielectric loss extraction is used to determine a lower bound of the intrinsic TLS loss of the trilayer of $7.2 times 10^{-5}$. The unusually high power-independent loss is attributed to GaAss intrinsic piezoelectricity.
Future quantum computation and networks require scalable monolithic circuits, which incorporate various advanced functionalities on a single physical substrate. Although substantial progress for various applications has already been demonstrated on d ifferent platforms, the range of diversified manipulation of photonic states on demand on a single chip has remained limited, especially dynamic time management. Here, we demonstrate an electro-optic device, including photon pair generation, propagation, electro-optical path routing, as well as a voltage-controllable time delay of up to ~ 12 ps on a single Ti:LIbO3 waveguide chip. As an example, we demonstrate Hong-Ou-Mandel interference with a visibility of more than 93$pm$ 1.8%. Our chip not only enables the deliberate manipulation of photonic states by rotating the polarization but also provides precise time control. Our experiment reveals that we have full flexible control over single-qubit operations by harnessing the complete potential of fast on-chip electro-optic modulation.
Generating entangled graph states of qubits requires high entanglement rates, with efficient detection of multiple indistinguishable photons from separate qubits. Integrating defect-based qubits into photonic devices results in an enhanced photon col lection efficiency, however, typically at the cost of a reduced defect emission energy homogeneity. Here, we demonstrate that the reduction in defect homogeneity in an integrated device can be partially offset by electric field tuning. Using photonic device-coupled implanted nitrogen vacancy (NV) centers in a GaP-on-diamond platform, we demonstrate large field-dependent tuning ranges and partial stabilization of defect emission energies. These results address some of the challenges of chip-scale entanglement generation.
Aluminium based platforms have allowed to reach major milestones for superconducting quantum circuits. For the next generation of devices, materials that are able to maintain low microwave losses while providing new functionalities, such as large kin etic inductance or compatibility with CMOS platform are sought for. Here we report on a combined direct current (DC) and microwave investigation of titanium nitride lms of dierent thicknesses grown using CMOS compatible methods. For microwave resonators made of TiN lm of thickness $sim$3 nm, we measured large kinetic inductance LK $sim$ 240 pH/sq, high mode impedance of $sim$ 4.2 k$Omega$ while maintaining microwave quality factor $sim$ 10^5 in the single photon limit. We present an in-depth study of the microwave loss mechanisms in these devices that indicates the importance of quasiparticles and provide insights for further improvement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا