ﻻ يوجد ملخص باللغة العربية
We report on the fabrication and metrology of superconducting caps for qubit circuits. As part of a 3D quantum integrated circuit architecture, a cap chip forms the upper half of an enclosure that provides isolation, increases vacuum participation ratio, and improves performance of individual resonant elements. Here, we demonstrate that such caps can be reliably fabricated, placed on a circuit chip, and form superconducting connections to the circuit.
We describe a microfabrication process for superconducting through-silicon vias appropriate for use in superconducting qubit quantum processors. With a sloped-wall via geometry, we can use non-conformal metal deposition methods such as electron-beam
Epitaxially-grown superconductor/dielectric/superconductor trilayers have the potential to form high-performance superconducting quantum devices and may even allow scalable superconducting quantum computing with low-surface-area qubits such as the me
Future quantum computation and networks require scalable monolithic circuits, which incorporate various advanced functionalities on a single physical substrate. Although substantial progress for various applications has already been demonstrated on d
Generating entangled graph states of qubits requires high entanglement rates, with efficient detection of multiple indistinguishable photons from separate qubits. Integrating defect-based qubits into photonic devices results in an enhanced photon col
Aluminium based platforms have allowed to reach major milestones for superconducting quantum circuits. For the next generation of devices, materials that are able to maintain low microwave losses while providing new functionalities, such as large kin