ﻻ يوجد ملخص باللغة العربية
Distance metric learning algorithms aim to appropriately measure similarities and distances between data points. In the context of clustering, metric learning is typically applied with the assist of side-information provided by experts, most commonly expressed in the form of cannot-link and must-link constraints. In this setting, distance metric learning algorithms move closer pairs of data points involved in must-link constraints, while pairs of points involved in cannot-link constraints are moved away from each other. For these algorithms to be effective, it is important to use a distance metric that matches the expert knowledge, beliefs, and expectations, and the transformations made to stick to the side-information should preserve geometrical properties of the dataset. Also, it is interesting to filter the constraints provided by the experts to keep only the most useful and reject those that can harm the clustering process. To address these issues, we propose to exploit the dual information associated with the pairwise constraints of the semi-supervised clustering problem. Experiments clearly show that distance metric learning algorithms benefit from integrating this dual information.
Image ranking is to rank images based on some known ranked images. In this paper, we propose an improved linear ordinal distance metric learning approach based on the linear distance metric learning model. By decomposing the distance metric $A$ as $L
Deep Metric Learning (DML), a widely-used technique, involves learning a distance metric between pairs of samples. DML uses deep neural architectures to learn semantic embeddings of the input, where the distance between similar examples is small whil
Graph distance metric learning serves as the foundation for many graph learning problems, e.g., graph clustering, graph classification and graph matching. Existing research works on graph distance metric (or graph kernels) learning fail to maintain t
We study a quantum information metric (or fidelity susceptibility) in conformal field theories with respect to a small perturbation by a primary operator. We argue that its gravity dual is approximately given by a volume of maximal time slice in an A
We explore trust in a relatively new area of data science: Automated Machine Learning (AutoML). In AutoML, AI methods are used to generate and optimize machine learning models by automatically engineering features, selecting models, and optimizing hy