ترغب بنشر مسار تعليمي؟ اضغط هنا

Read, Listen, and See: Leveraging Multimodal Information Helps Chinese Spell Checking

74   0   0.0 ( 0 )
 نشر من قبل Qingyu Zhou
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Chinese Spell Checking (CSC) aims to detect and correct erroneous characters for user-generated text in the Chinese language. Most of the Chinese spelling errors are misused semantically, phonetically or graphically similar characters. Previous attempts noticed this phenomenon and try to use the similarity for this task. However, these methods use either heuristics or handcrafted confusion sets to predict the correct character. In this paper, we propose a Chinese spell checker called ReaLiSe, by directly leveraging the multimodal information of the Chinese characters. The ReaLiSe model tackles the CSC task by (1) capturing the semantic, phonetic and graphic information of the input characters, and (2) selectively mixing the information in these modalities to predict the correct output. Experiments on the SIGHAN benchmarks show that the proposed model outperforms strong baselines by a large margin.



قيم البحث

اقرأ أيضاً

90 - Sina Ahmadi 2021
Spell checking and morphological analysis are two fundamental tasks in text and natural language processing and are addressed in the early stages of the development of language technology. Despite the previous efforts, there is no progress in open-so urce to create such tools for Sorani Kurdish, also known as Central Kurdish, as a less-resourced language. In this paper, we present our efforts in annotating a lexicon with morphosyntactic tags and also, extracting morphological rules of Sorani Kurdish to build a morphological analyzer, a stemmer and a spell-checking system using Hunspell. This implementation can be used for further developments in the field by researchers and also, be integrated into text editors under a publicly available license.
175 - Keunwoo Choi , Yuxuan Wang 2021
We propose a multimodal singing language classification model that uses both audio content and textual metadata. LRID-Net, the proposed model, takes an audio signal and a language probability vector estimated from the metadata and outputs the probabi lities of the target languages. Optionally, LRID-Net is facilitated with modality dropouts to handle a missing modality. In the experiment, we trained several LRID-Nets with varying modality dropout configuration and tested them with various combinations of input modalities. The experiment results demonstrate that using multimodal input improves performance. The results also suggest that adopting modality dropout does not degrade the performance of the model when there are full modality inputs while enabling the model to handle missing modality cases to some extent.
59 - Junyang Lin , Rui Men , An Yang 2021
In this work, we construct the largest dataset for multimodal pretraining in Chinese, which consists of over 1.9TB images and 292GB texts that cover a wide range of domains. We propose a cross-modal pretraining method called M6, referring to Multi-Mo dality to Multi-Modality Multitask Mega-transformer, for unified pretraining on the data of single modality and multiple modalities. We scale the model size up to 10 billion and 100 billion parameters, and build the largest pretrained model in Chinese. We apply the model to a series of downstream applications, and demonstrate its outstanding performance in comparison with strong baselines. Furthermore, we specifically design a downstream task of text-guided image generation, and show that the finetuned M6 can create high-quality images with high resolution and abundant details.
98 - Roger Hsiao , Dogan Can , Tim Ng 2020
The Listen, Attend and Spell (LAS) model and other attention-based automatic speech recognition (ASR) models have known limitations when operated in a fully online mode. In this paper, we analyze the online operation of LAS models to demonstrate that these limitations stem from the handling of silence regions and the reliability of online attention mechanism at the edge of input buffers. We propose a novel and simple technique that can achieve fully online recognition while meeting accuracy and latency targets. For the Mandarin dictation task, our proposed approach can achieve a character error rate in online operation that is within 4% relative to an offline LAS model. The proposed online LAS model operates at 12% lower latency relative to a conventional neural network hidden Markov model hybrid of comparable accuracy. We have validated the proposed method through a production scale deployment, which, to the best of our knowledge, is the first such deployment of a fully online LAS model.
Recent pretraining models in Chinese neglect two important aspects specific to the Chinese language: glyph and pinyin, which carry significant syntax and semantic information for language understanding. In this work, we propose ChineseBERT, which inc orporates both the {it glyph} and {it pinyin} information of Chinese characters into language model pretraining. The glyph embedding is obtained based on different fonts of a Chinese character, being able to capture character semantics from the visual features, and the pinyin embedding characterizes the pronunciation of Chinese characters, which handles the highly prevalent heteronym phenomenon in Chinese (the same character has different pronunciations with different meanings). Pretrained on large-scale unlabeled Chinese corpus, the proposed ChineseBERT model yields significant performance boost over baseline models with fewer training steps. The porpsoed model achieves new SOTA performances on a wide range of Chinese NLP tasks, including machine reading comprehension, natural language inference, text classification, sentence pair matching, and competitive performances in named entity recognition. Code and pretrained models are publicly available at https://github.com/ShannonAI/ChineseBert.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا