ترغب بنشر مسار تعليمي؟ اضغط هنا

ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information

138   0   0.0 ( 0 )
 نشر من قبل Jiwei Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent pretraining models in Chinese neglect two important aspects specific to the Chinese language: glyph and pinyin, which carry significant syntax and semantic information for language understanding. In this work, we propose ChineseBERT, which incorporates both the {it glyph} and {it pinyin} information of Chinese characters into language model pretraining. The glyph embedding is obtained based on different fonts of a Chinese character, being able to capture character semantics from the visual features, and the pinyin embedding characterizes the pronunciation of Chinese characters, which handles the highly prevalent heteronym phenomenon in Chinese (the same character has different pronunciations with different meanings). Pretrained on large-scale unlabeled Chinese corpus, the proposed ChineseBERT model yields significant performance boost over baseline models with fewer training steps. The porpsoed model achieves new SOTA performances on a wide range of Chinese NLP tasks, including machine reading comprehension, natural language inference, text classification, sentence pair matching, and competitive performances in named entity recognition. Code and pretrained models are publicly available at https://github.com/ShannonAI/ChineseBert.



قيم البحث

اقرأ أيضاً

74 - Falcon Z. Dai , Zheng Cai 2017
Given the advantage and recent success of English character-level and subword-unit models in several NLP tasks, we consider the equivalent modeling problem for Chinese. Chinese script is logographic and many Chinese logograms are composed of common s ubstructures that provide semantic, phonetic and syntactic hints. In this work, we propose to explicitly incorporate the visual appearance of a characters glyph in its representation, resulting in a novel glyph-aware embedding of Chinese characters. Being inspired by the success of convolutional neural networks in computer vision, we use them to incorporate the spatio-structural patterns of Chinese glyphs as rendered in raw pixels. In the context of two basic Chinese NLP tasks of language modeling and word segmentation, the model learns to represent each characters task-relevant semantic and syntactic information in the character-level embedding.
Chinese pinyin input methods are very important for Chinese language processing. Actually, users may make typos inevitably when they input pinyin. Moreover, pinyin typo correction has become an increasingly important task with the popularity of smart phones and the mobile Internet. How to exploit the knowledge of users typing behaviors and support the typo correction for acronym pinyin remains a challenging problem. To tackle these challenges, we propose KNPTC, a novel approach based on neural machine translation (NMT). In contrast to previous work, KNPTC is able to integrate explicit knowledge into NMT for pinyin typo correction, and is able to learn to correct a variety of typos without the guidance of manually selected constraints or languagespecific features. In this approach, we first obtain the transition probabilities between adjacent letters based on large-scale real-life datasets. Then, we construct the ground-truth alignments of training sentence pairs by utilizing these probabilities. Furthermore, these alignments are integrated into NMT to capture sensible pinyin typo correction patterns. KNPTC is applied to correct typos in real-life datasets, which achieves 32.77% increment on average in accuracy rate of typo correction compared against the state-of-the-art system.
Conventional tokenization methods for Chinese pretrained language models (PLMs) treat each character as an indivisible token (Devlin et al., 2019), which ignores the characteristics of the Chinese writing system. In this work, we comprehensively stud y the influences of three main factors on the Chinese tokenization for PLM: pronunciation, glyph (i.e., shape), and word boundary. Correspondingly, we propose three kinds of tokenizers: 1) SHUOWEN (meaning Talk Word), the pronunciation-based tokenizers; 2) JIEZI (meaning Solve Character), the glyph-based tokenizers; 3) Word segmented tokenizers, the tokenizers with Chinese word segmentation. To empirically compare the effectiveness of studied tokenizers, we pretrain BERT-style language models with them and evaluate the models on various downstream NLU tasks. We find that SHUOWEN and JIEZI tokenizers can generally outperform conventional single-character tokenizers, while Chinese word segmentation shows no benefit as a preprocessing step. Moreover, the proposed SHUOWEN and JIEZI tokenizers exhibit significantly better robustness in handling noisy texts. The code and pretrained models will be publicly released to facilitate linguistically informed Chinese NLP.
Story generation, namely generating a reasonable story from a leading context, is an important but challenging task. In spite of the success in modeling fluency and local coherence, existing neural language generation models (e.g., GPT-2) still suffe r from repetition, logic conflicts, and lack of long-range coherence in generated stories. We conjecture that this is because of the difficulty of associating relevant commonsense knowledge, understanding the causal relationships, and planning entities and events with proper temporal order. In this paper, we devise a knowledge-enhanced pretraining model for commonsense story generation. We propose to utilize commonsense knowledge from external knowledge bases to generate reasonable stories. To further capture the causal and temporal dependencies between the sentences in a reasonable story, we employ multi-task learning which combines a discriminative objective to distinguish true and fake stories during fine-tuning. Automatic and manual evaluation shows that our model can generate more reasonable stories than state-of-the-art baselines, particularly in terms of logic and global coherence.
79 - Yunxin Li , Yu Zhao , Baotian Hu 2021
Previous works indicate that the glyph of Chinese characters contains rich semantic information and has the potential to enhance the representation of Chinese characters. The typical method to utilize the glyph features is by incorporating them into the character embedding space. Inspired by previous methods, we innovatively propose a Chinese pre-trained representation model named as GlyphCRM, which abandons the ID-based character embedding method yet solely based on sequential character images. We render each character into a binary grayscale image and design two-channel position feature maps for it. Formally, we first design a two-layer residual convolutional neural network, namely HanGlyph to generate the initial glyph representation of Chinese characters, and subsequently adopt multiple bidirectional encoder Transformer blocks as the superstructure to capture the context-sensitive information. Meanwhile, we feed the glyph features extracted from each layer of the HanGlyph module into the underlying Transformer blocks by skip-connection method to fully exploit the glyph features of Chinese characters. As the HanGlyph module can obtain a sufficient glyph representation of any Chinese character, the long-standing out-of-vocabulary problem could be effectively solved. Extensive experimental results indicate that GlyphCRM substantially outperforms the previous BERT-based state-of-the-art model on 9 fine-tuning tasks, and it has strong transferability and generalization on specialized fields and low-resource tasks. We hope this work could spark further research beyond the realms of well-established representation of Chinese texts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا