ترغب بنشر مسار تعليمي؟ اضغط هنا

Semiconductor nanodevices as a probe of strong electron correlations

58   0   0.0 ( 0 )
 نشر من قبل Pedro Vianez
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Interactions between electrons in solids are often behind exciting novel effects such as ferromagnetism, antiferromagnetism and superconductivity. All these phenomena break away from the single-electron picture, instead having to take into account the collective, correlated behaviour of the system as a whole. In this chapter we look at how tunnelling spectroscopy can be used as the experimental tool of choice for probing correlation and interaction effects in one-dimensional (1D) electron systems. We start by introducing the Tomonaga-Luttinger Liquid (TLL) model, showing how it marks a clear departure from Fermi-liquid theory. We then present some early experimental results obtained using tunnelling devices and how they contributed to the decisive observation of both spin-charge separation and power-law behaviour. Other experimental techniques, such as photoemission and transport measurements, are also discussed. In the second half of the chapter we introduce two nonlinear models that are counterparts to the TLL theory, known as the mobile-impurity and the mode-hierarchy pictures, and present some of the most recent experimental evidence in support of both.

قيم البحث

اقرأ أيضاً

A novel method for detecting Luttinger-liquid behavior is proposed. The idea is to measure the tunneling conductance between a quantum wire and a parallel two-dimensional electron system as a function of both the potential difference between them, $V $, and an in-plane magnetic field, $B$. We show that the two-parameter dependence on $B$ and $V$ allows for a determination of the characteristic dependence on wave vector $q$ and frequency $omega$ of the {it spectral function}, $A_{rm LL}(q,omega)$, of the quantum wire. In particular, the separation of spin and charge in the Luttinger liquid should manifest itself as singularities in the $I$-$V$-characteristic. The experimental feasibility of the proposal is discussed.
The Lieb lattice possesses three bands and with intrinsic spin orbit coupling $lambda$, supports topologically non-trivial band insulating phases. At half filling the lower band is fully filled, while the upper band is empty. The chemical potential l ies in the flat band (FB) located at the middle of the spectrum, thereby stabilizing a flat band insulator. At this filling, we introduce on-site Hubbard interaction $U$ on all sites. Within a slave rotor mean field theory we show that, in spite of the singular effect of interaction on the FB, the three bands remain stable up to a fairly large critical correlation strength ($U_{crit}$), creating a correlated flat band insulator. Beyond $U_{crit}$, there is a sudden transition to a Mott insulating state, where the FB is destroyed due to complete transfer of spectral weight from the FB to the upper and lower bands. We show that all the correlation driven insulating phases host edge modes with linearly dispersing bands along with a FB passing through the Dirac point, exhibiting that the topological nature of the bulk band structure remains intact in presence of strong correlation. Furthermore, in the limiting case of $U$ introduced only on one sublattice where $lambda=0$, we show that the Lieb lattice can support mixed edge modes containing contributions from both spinons and electrons, in contrast to purely spinon edge modes arising in the topological Mott insulator.
We report the observation of an unusual behavior of highly extended 5d electrons in Y2Ir2O7 belonging to pyrochlore family of great current interest using high resolution photoemission spectroscopy. The experimental bulk spectra reveal an intense low er Hubbard band in addition to weak intensities in the vicinity of the Fermi level, e_F. This provides a direct evidence for strong electron correlation among the 5d electrons, despite their highly extended nature. The high resolution spectrum at room temperature exhibits a pseudogap at e_F and |e - e_F|^2 dependence demonstrating the importance of electron correlation in this system. Remarkably, in the magnetically ordered phase (T < 150 K), the spectral lineshape evolves to a |e - e_F|^1.5 dependence emphasizing the dominant role of electron-magnon coupling.
Electron correlations amplify quantum fluctuations and, as such, they have been recognized as the origin of a rich landscape of quantum phases. Whether and how they lead to gapless topological states is an outstanding question, and a framework that a llows for determining novel phases and identifying new materials is in pressing need. Here we advance a general approach, in which strong correlations cooperate with crystalline symmetry to drive gapless topological states. We test this design principle by exploring Kondo lattice models and materials whose space group symmetries may promote different kinds of electronic degeneracies, with a particular focus on square-net systems. Weyl-Kondo nodal-line semimetals -- with nodes pinned to the Fermi energy -- are identified in both two and three dimensions. We apply the approach to identify materials for the realization of these correlation-driven topological semimetal phases. Our findings illustrate the potential of the proposed design principle to guide the search for new topological phases and materials in a broad range of strongly correlated systems.
We review recent progress in point contact spectroscopy (PCS) to extract spectroscopic information out of correlated electron materials, with the emphasis on non-superconducting states. PCS has been used to detect bosonic excitations in normal metals , where signatures (e.g. phonons) are usually less than 1$%$ of the measured conductance. In the superconducting state, point contact Andreev reflection (PCAR) has been widely used to study properties of the superconducting gap in various superconductors. In the last decade, there have been more and more experimental results suggesting that the point contact conductance could reveal new features associated with the unusual single electron dynamics in non-superconducting states, shedding a new light on exploring the nature of the competing phases in correlated materials. We will summarize the theories for point contact spectroscopy developed from different approaches and highlight these conceptual differences distinguishing point contact spectroscopy from tunneling-based probes. Moreover, we will show how the Schwinger-Kadanoff-Baym-Keldysh (SKBK) formalism together with the appropriate modeling of the nano-scale point contacts randomly distributed across the junction leads to the conclusion that the point contact conductance is proportional to the {it effective density of states}, a physical quantity that can be computed if the electron self energy is known. The experimental data on iron based superconductors and heavy fermion compounds will be analyzed in this framework. These recent developments have extended the applicability of point contact spectroscopy to correlated materials, which will help us achieve a deeper understanding of the single electron dynamics in strongly correlated systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا