ﻻ يوجد ملخص باللغة العربية
The Lieb lattice possesses three bands and with intrinsic spin orbit coupling $lambda$, supports topologically non-trivial band insulating phases. At half filling the lower band is fully filled, while the upper band is empty. The chemical potential lies in the flat band (FB) located at the middle of the spectrum, thereby stabilizing a flat band insulator. At this filling, we introduce on-site Hubbard interaction $U$ on all sites. Within a slave rotor mean field theory we show that, in spite of the singular effect of interaction on the FB, the three bands remain stable up to a fairly large critical correlation strength ($U_{crit}$), creating a correlated flat band insulator. Beyond $U_{crit}$, there is a sudden transition to a Mott insulating state, where the FB is destroyed due to complete transfer of spectral weight from the FB to the upper and lower bands. We show that all the correlation driven insulating phases host edge modes with linearly dispersing bands along with a FB passing through the Dirac point, exhibiting that the topological nature of the bulk band structure remains intact in presence of strong correlation. Furthermore, in the limiting case of $U$ introduced only on one sublattice where $lambda=0$, we show that the Lieb lattice can support mixed edge modes containing contributions from both spinons and electrons, in contrast to purely spinon edge modes arising in the topological Mott insulator.
We calculate exact zero-temperature real space properties of a substitutional magnetic impurity coupled to the edge of a zigzag silicene-like nanoribbon. Using a Lanczos transformation [Phys. Rev. B 91, 085101 (2015)] and the density matrix renormali
Magic-angle twisted bilayer graphene has recently become a thriving material platform realizing correlated electron phenomena taking place within its topological flat bands. Several numerical and analytical methods have been applied to understand the
Electron correlations amplify quantum fluctuations and, as such, they have been recognized as the origin of a rich landscape of quantum phases. Whether and how they lead to gapless topological states is an outstanding question, and a framework that a
Three-dimensional (3D) topological insulators (TIs) are new forms of quantum matter that are characterized by their insulating bulk state and exotic metallic surface state, which hosts helical Dirac fermions1-2. Very recently, BiTeCl, one of the pola
In addition to novel surface states, topological insulators can also exhibit robust gapless states at crystalline defects. Step edges constitute a class of common defects on the surface of crystals. In this work we establish the topological nature of