ترغب بنشر مسار تعليمي؟ اضغط هنا

Coexistence of zero-, one- and two-dimensional degeneracy in tetragonal SnO$_2$ phonons

108   0   0.0 ( 0 )
 نشر من قبل Xiaotian Wang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on the dimension of degeneracy, topological electronic systems can roughly be divided into three parts: nodal point, line and surface materials corresponding to zero-, one- and two-dimensional degeneracy, respectively. In parallel to electronic systems, the concept of topology was extended to phonons, promoting the birth of topological phonons. Till date, few nodal point, line and surface phonons candidates have been predicted in solid-state materials. In this study, based on symmetry analysis and first-principles calculation, for the first time, we prove that zero-, one- and two-dimensional degeneracy co-exist in the phonon dispersion of one single realistic solid-state material SnO$_2$ with textit{P}4$_2$/textit{mnm} structure. In contrast to the previously reported electronic systems, the topological phonons observed in SnO$_2$ are not restricted by the Pauli exclusion principle, and they experience negligible spin-orbit coupling effect. Hence, SnO$_2$ with multiple dimensions of degeneracy phonons is a good platform for studying the entanglement among nodal point, line and surface phonons. Moreover, obvious phonon surface states are visible, which is beneficial for experimental detection.

قيم البحث

اقرأ أيضاً

We report the observation of a two-dimensional electron system (2DES) at the $(110)$ surface of the transparent bulk insulator SnO$_2$, and the tunability of its carrier density by means of temperature or Eu deposition. The 2DES is insensitive to sur face reconstructions and, surprisingly, it survives even after exposure to ambient conditions --an extraordinary fact recalling the well known catalytic properties SnO$_2$. Our data show that surface oxygen vacancies are at the origin of such 2DES, providing key information about the long-debated origin of $n$-type conductivity in SnO$_2$, at the basis of a wide range of applications. Furthermore, our study shows that the emergence of a 2DES in a given oxide depends on a delicate interplay between its crystal structure and the orbital character of its conduction band.
We report on a novel material, namely two-dimensional (2D) V$_{1-x}$Pt$_x$Se$_2$ alloy, exhibiting simultaneously ferromagnetic order and Rashba spin-orbit coupling. While ferromagnetism is absent in 1T-VSe$_2$ due to the competition with the charge density wave phase, we demonstrate theoretically and experimentally that the substitution of vanadium by platinum in VSe$_2$ (10-50 %) to form an homogeneous 2D alloy restores ferromagnetic order with Curie temperatures of 6 K for 5 monolayers and 25 K for one monolayer of V$_{0.65}$Pt$_{0.35}$Se$_2$. Moreover, the presence of platinum atoms gives rise to Rashba spin-orbit coupling in (V,Pt)Se$_2$ providing an original platform to study the interplay between ferromagnetism and spin-orbit coupling in the 2D limit.
92 - A. Sparavigna 2007
The modes of vibrations in honeycomb and auxetic structures are studied, with models in which the lattice is represented by a planar network where sites are connected by strings and rigid rods. The auxetic network is obtained modifying a model propos ed by Evans et al. in 1991, and used to explain the negative Poissons ratio of auxetic materials. This relevant property means that the materials have a lateral extension, instead to shrink, when they are stretched. For what concerns the acoustic properties of these structures, they absorb noise and vibrations more efficiently than non-auxetic equivalents. The acoustic and optical dispersions obtained in the case of the auxetic model are compared with the dispersions displayed by a conventional honeycomb network. It is possible to see that the phonon dispersions of the auxetic model possess a complete bandgap and that the Goldstone mode group velocity is strongly dependent on the direction of propagation. The presence of a complete bandgap can explain some experimental observations on the sound propagation properties of the auxetic materials.
We present time-resolved photoemission experiments from a peculiar bismuth surface, Bi(114). The strong one-dimensional character of this surface is reflected in the Fermi surface, which consists of spin-polarized straight lines. Our results show tha t the depletion of the surface state and the population of the bulk conduction band after the initial optical excitation persist for very long times. The disequilibrium within the hot electron gas along with strong electron-phonon coupling cause a displacive excitation of coherent phonons, which in turn are reflected in coherent modulations of the electronic states. Beside the well-known A1g bulk phonon mode at 2.76 THz the time-resolved photoelectron spectra reveal a second mode at 0.72 THz which can be attributed to an optical surface phonon mode along the atomic rows of the Bi(114) surface.
We investigate the possibility of trapping quasi-particles possessing spin degree of freedom in hybrid structures. The hybrid system we are considering here is composed of a semi-magnetic quantum well placed a few nanometers below a ferromagnetic mic romagnet. We are interested in two different micromagnet shapes: cylindrical (micro-disk) and rectangular geometry. We show that in the case of a micro-disk, the spin object is localized in all three directions and therefore zero-dimensional states are created, and in the case of an elongated rectangular micromagnet, the quasi-particles can move freely in one direction, hence one-dimensional states are formed. After calculating profiles of the magnetic field produced by the micromagnets, we analyze in detail the possible light absorption spectrum for different micromagnet thicknesses, and different distances between the micromagnet and the semimagnetic quantum well. We find that the discrete spectrum of the localized states can be detected via spatially-resolved low temperature optical measurement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا