ﻻ يوجد ملخص باللغة العربية
We present FedScale, a diverse set of challenging and realistic benchmark datasets to facilitate scalable, comprehensive, and reproducible federated learning (FL) research. FedScale datasets are large-scale, encompassing a diverse range of important FL tasks, such as image classification, object detection, language modeling, speech recognition, and reinforcement learning. For each dataset, we provide a unified evaluation protocol using realistic data splits and evaluation metrics. To meet the pressing need for reproducing realistic FL at scale, we have also built an efficient evaluation platform to simplify and standardize the process of FL experimental setup and model evaluation. Our evaluation platform provides flexible APIs to implement new FL algorithms and includes new execution backends with minimal developer efforts. Finally, we perform indepth benchmark experiments on these datasets. Our experiments suggest fruitful opportunities in heterogeneity-aware co-optimizations of the system and statistical efficiency under realistic FL characteristics. FedScale is open-source with permissive licenses and actively maintained,1 and we welcome feedback and contributions from the community.
As artificial intelligence (AI)-empowered applications become widespread, there is growing awareness and concern for user privacy and data confidentiality. This has contributed to the popularity of federated learning (FL). FL applications often face
Federated Learning (FL) allows edge devices to collaboratively learn a shared prediction model while keeping their training data on the device, thereby decoupling the ability to do machine learning from the need to store data in the cloud. Despite th
Model-based reinforcement learning (MBRL) is widely seen as having the potential to be significantly more sample efficient than model-free RL. However, research in model-based RL has not been very standardized. It is fairly common for authors to expe
In this paper, we propose an energy-efficient federated meta-learning framework. The objective is to enable learning a meta-model that can be fine-tuned to a new task with a few number of samples in a distributed setting and at low computation and co