ترغب بنشر مسار تعليمي؟ اضغط هنا

Coplanar cavity for strong coupling between photons and magnons in van der Waals antiferromagnet

99   0   0.0 ( 0 )
 نشر من قبل Supriya Mandal
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the performance of niobium nitride superconducting coplanar waveguide resonators towards hybrid quantum devices with magnon-photon coupling. We find internal quality factors ~ 20000 at 20 mK base temperature, in zero magnetic field. We find that by reducing film thickness below 100 nm internal quality factor greater than 1000 can be maintained up to parallel magnetic field of ~ 1 T and perpendicular magnetic field of ~ 100 mT. We further demonstrate strong coupling of microwave photons in these resonators, with magnons in chromium trichloride, a van der Waals antiferromagnet, which shows that these cavities serve as a good platform for studying magnon-photon coupling in 2D magnonics based hybrid quantum systems. We demonstrate strong magnon-photon coupling for both optical and acoustic magnon modes of an antiferromagnet.

قيم البحث

اقرأ أيضاً

Semiconductor heterostructures are the fundamental platform for many important device applications such as lasers, light-emitting diodes, solar cells and high-electron-mobility transistors. Analogous to traditional heterostructures, layered transitio n metal dichalcogenide (TMDC) heterostructures can be designed and built by assembling individual single-layers into functional multilayer structures, but in principle with atomically sharp interfaces, no interdiffusion of atoms, digitally controlled layered components and no lattice parameter constraints. Nonetheless, the optoelectronic behavior of this new type of van der Waals (vdW) semiconductor heterostructure is unknown at the single-layer limit. Specifically, it is experimentally unknown whether the optical transitions will be spatially direct or indirect in such hetero-bilayers. Here, we investigate artificial semiconductor heterostructures built from single layer WSe2 and MoS2 building blocks. We observe a large Stokes-like shift of ~100 meV between the photoluminescence peak and the lowest absorption peak that is consistent with a type II band alignment with spatially direct absorption but spatially indirect emission. Notably, the photoluminescence intensity of this spatially indirect transition is strong, suggesting strong interlayer coupling of charge carriers. The coupling at the hetero-interface can be readily tuned by inserting hexagonal BN (h-BN) dielectric layers into the vdW gap. The generic nature of this interlayer coupling consequently provides a new degree of freedom in band engineering and is expected to yield a new family of semiconductor heterostructures having tunable optoelectronic properties with customized composite layers.
The van der Waals interactions between two parallel graphitic nanowiggles (GNWs) are calculated using the coupled dipole method (CDM). The CDM is an efficient and accurate approach to determine such interactions explicitly by taking into account the discrete atomic structure. Our findings show that the van der Waals forces vary from attraction to repulsion as nanoribbons move along their lengths with respect to each other. This feature leads to a number of stable and unstable positions of the system during the movement process. These positions can be tuned by changing the length of GNW. Moreover, the influence of the thermal effect on the van der Waals interactions is also extensively investigated. This work would give good direction for both future theoretical and experimental studies.
The van der Waals heterostructures are a fertile frontier for discovering emergent phenomena in condensed matter systems. They are constructed by stacking elements of a large library of two-dimensional materials, which couple together through van der Waals interactions. However, the number of possible combinations within this library is staggering, and fully exploring their potential is a daunting task. Here we introduce van der Waals metamaterials to rapidly prototype and screen their quantum counterparts. These layered metamaterials are designed to reshape the flow of ultrasound to mimic electron motion. In particular, we show how to construct analogues of all stacking configurations of bilayer and trilayer graphene through the use of interlayer membranes that emulate van der Waals interactions. By changing the membranes density and thickness, we reach coupling regimes far beyond that of conventional graphene. We anticipate that van der Waals metamaterials will explore, extend, and inform future electronic devices. Equally, they allow the transfer of useful electronic behavior to acoustic systems, such as flat bands in magic-angle twisted bilayer graphene, which may aid the development of super-resolution ultrasound imagers.
We reveal stacking-induced strong coupling between atomic motion and interlayer excitons through photocurrent measurements of WSe$_2$/MoSe$_2$ heterojunction photodiodes. Strong coupling manifests as pronounced periodic sidebands in the photocurrent spectrum in frequency windows close to the interlayer exciton resonances. The sidebands, which repeat over large swathes of the interlayer exciton photocurrent spectrum, occur in energy increments corresponding directly to a prominent vibrational mode of the heterojunction. Such periodic patterns, together with interlayer photoconductance oscillations, vividly demonstrate the emergence of extraordinarily strong exciton-phonon coupling - and its impact on interlayer excitations - in stack-engineered van der Waals heterostructure devices. Our results establish photocurrent spectroscopy as a powerful tool for interrogating vibrational coupling to interlayer excitons and suggest an emerging strategy to control vibronic physics in the solid-state.
Spin and photonic systems are at the heart of modern information devices and emerging quantum technologies. An interplay between electron-hole pairs (excitons) in semiconductors and collective spin excitations (magnons) in magnetic crystals would bri dge these heterogeneous systems, leveraging their individual assets in novel interconnected devices. Here, we report the magnon-exciton coupling at the interface between a magnetic thin film and an atomically-thin semiconductor. Our approach allies the long-lived magnons hosted in a film of yttrium iron garnet (YIG) to strongly-bound excitons in a flake of a transition metal dichalcogenide, MoSe$_2$. The magnons induce on the excitons a dynamical valley Zeeman effect ruled by interfacial exchange interactions. This nascent class of hybrid system suggests new opportunities for information transduction between microwave and optical regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا