ﻻ يوجد ملخص باللغة العربية
We investigate the performance of niobium nitride superconducting coplanar waveguide resonators towards hybrid quantum devices with magnon-photon coupling. We find internal quality factors ~ 20000 at 20 mK base temperature, in zero magnetic field. We find that by reducing film thickness below 100 nm internal quality factor greater than 1000 can be maintained up to parallel magnetic field of ~ 1 T and perpendicular magnetic field of ~ 100 mT. We further demonstrate strong coupling of microwave photons in these resonators, with magnons in chromium trichloride, a van der Waals antiferromagnet, which shows that these cavities serve as a good platform for studying magnon-photon coupling in 2D magnonics based hybrid quantum systems. We demonstrate strong magnon-photon coupling for both optical and acoustic magnon modes of an antiferromagnet.
Semiconductor heterostructures are the fundamental platform for many important device applications such as lasers, light-emitting diodes, solar cells and high-electron-mobility transistors. Analogous to traditional heterostructures, layered transitio
The van der Waals interactions between two parallel graphitic nanowiggles (GNWs) are calculated using the coupled dipole method (CDM). The CDM is an efficient and accurate approach to determine such interactions explicitly by taking into account the
The van der Waals heterostructures are a fertile frontier for discovering emergent phenomena in condensed matter systems. They are constructed by stacking elements of a large library of two-dimensional materials, which couple together through van der
We reveal stacking-induced strong coupling between atomic motion and interlayer excitons through photocurrent measurements of WSe$_2$/MoSe$_2$ heterojunction photodiodes. Strong coupling manifests as pronounced periodic sidebands in the photocurrent
Spin and photonic systems are at the heart of modern information devices and emerging quantum technologies. An interplay between electron-hole pairs (excitons) in semiconductors and collective spin excitations (magnons) in magnetic crystals would bri