ﻻ يوجد ملخص باللغة العربية
Despite the prevalence of hypergraphs in a variety of high-impact applications, there are relatively few works on hypergraph representation learning, most of which primarily focus on hyperlink prediction, often restricted to the transductive learning setting. Among others, a major hurdle for effective hypergraph representation learning lies in the label scarcity of nodes and/or hyperedges. To address this issue, this paper presents an end-to-end, bi-level pre-training strategy with Graph Neural Networks for hypergraphs. The proposed framework named HyperGene bears three distinctive advantages. First, it is capable of ingesting the labeling information when available, but more importantly, it is mainly designed in the self-supervised fashion which significantly broadens its applicability. Second, at the heart of the proposed HyperGene are two carefully designed pretexts, one on the node level and the other on the hyperedge level, which enable us to encode both the local and the global context in a mutually complementary way. Third, the proposed framework can work in both transductive and inductive settings. When applying the two proposed pretexts in tandem, it can accelerate the adaptation of the knowledge from the pre-trained model to downstream applications in the transductive setting, thanks to the bi-level nature of the proposed method. The extensive experimental results demonstrate that: (1) HyperGene achieves up to 5.69% improvements in hyperedge classification, and (2) improves pre-training efficiency by up to 42.80% on average.
The pre-training on the graph neural network model can learn the general features of large-scale networks or networks of the same type by self-supervised methods, which allows the model to work even when node labels are missing. However, the existing
Graph neural networks (GNNs) have been demonstrated to be powerful in modeling graph-structured data. However, training GNNs usually requires abundant task-specific labeled data, which is often arduously expensive to obtain. One effective way to redu
Graph neural networks (GNNs) are shown to be successful in modeling applications with graph structures. However, training an accurate GNN model requires a large collection of labeled data and expressive features, which might be inaccessible for some
Graph representation learning has emerged as a powerful technique for addressing real-world problems. Various downstream graph learning tasks have benefited from its recent developments, such as node classification, similarity search, and graph class
In this paper, we present a hypergraph neural networks (HGNN) framework for data representation learning, which can encode high-order data correlation in a hypergraph structure. Confronting the challenges of learning representation for complex data i