ﻻ يوجد ملخص باللغة العربية
We study the existence of nontrivial solutions for a nonlinear fractional elliptic equation in presence of logarithmic and critical exponential nonlinearities. This problem extends [5] to fractional $N/s$-Laplacian equations with logarithmic nonlinearity. We overcome the lack of compactness due to the critical exponential nonlinearity by using the fractional Trudinger-Moser inequality. The existence result is established via critical point theory.
We study inverse problems for semilinear elliptic equations with fractional power type nonlinearities. Our arguments are based on the higher order linearization method, which helps us to solve inverse problems for certain nonlinear equations in cases
We are concerned with existence results for a critical problem of Brezis-Nirenberg Type involving an integro-differential operator. Our study includes the fractional Laplacian. Our approach still applies when adding small singular terms. It hinges on
In this paper we consider the problem: $partial_{t} u- Delta u=f(u),; u(0)=u_0in exp L^p(R^N),$ where $p>1$ and $f : RtoR$ having an exponential growth at infinity with $f(0)=0.$ We prove local well-posedness in $exp L^p_0(R^N)$ for $f(u)sim mbox{e}^
In this article, we establish the existence of solutions to the fractional $p-$Kirchhoff type equations with a generalized Choquard nonlinearities without assuming the Ambrosetti-Rabinowitz condition.
In this paper, we deal with the existence and multiplicity of solutions for the fractional elliptic problems involving critical and supercritical Sobolev exponent via variational arguments. By means of the truncation combining with the Moser iteratio