ﻻ يوجد ملخص باللغة العربية
In this paper, we deal with the existence and multiplicity of solutions for the fractional elliptic problems involving critical and supercritical Sobolev exponent via variational arguments. By means of the truncation combining with the Moser iteration, we prove that the problems has at least three solutions.
We prove a global fractional differentiability result via the fractional Caccioppoli-type estimate for solutions to nonlinear elliptic problems with measure data. This work is in fact inspired by the recent paper [B. Avelin, T. Kuusi, G. Mingione, {e
We study inverse problems for semilinear elliptic equations with fractional power type nonlinearities. Our arguments are based on the higher order linearization method, which helps us to solve inverse problems for certain nonlinear equations in cases
The aim of this paper is to establish two results about multiplicity of solutions to problems involving the $1-$Laplacian operator, with nonlinearities with critical growth. To be more specific, we study the following problem $$ left{ begin{array}{l}
Let $Omega subset mathbb{R}^N$ be a bounded domain and $delta(x)$ be the distance of a point $xin Omega$ to the boundary. We study the positive solutions of the problem $Delta u +frac{mu}{delta(x)^2}u=u^p$ in $Omega$, where $p>0, ,p e 1$ and $mu in m
We describe the asymptotic behavior of positive solutions $u_epsilon$ of the equation $-Delta u + au = 3,u^{5-epsilon}$ in $Omegasubsetmathbb{R}^3$ with a homogeneous Dirichlet boundary condition. The function $a$ is assumed to be critical in the sen