ترغب بنشر مسار تعليمي؟ اضغط هنا

Well-posedness, Global existence and decay estimates for the heat equation with general power-exponential nonlinearities

123   0   0.0 ( 0 )
 نشر من قبل Majdoub Mohamed
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we consider the problem: $partial_{t} u- Delta u=f(u),; u(0)=u_0in exp L^p(R^N),$ where $p>1$ and $f : RtoR$ having an exponential growth at infinity with $f(0)=0.$ We prove local well-posedness in $exp L^p_0(R^N)$ for $f(u)sim mbox{e}^{|u|^q},;0<qleq p,; |u|to infty.$ However, if for some $lambda>0,$ $displaystyleliminf_{sto infty}left(f(s),{rm{e}}^{-lambda s^p}right)>0,$ then non-existence occurs in $exp L^p(R^N).$ Under smallness condition on the initial data and for exponential nonlinearity $f$ such that $|f(u)|sim |u|^{m}$ as $uto 0,$ ${N(m-1)over 2}geq p$, we show that the solution is global. In particular, $p-1>0$ sufficiently small is allowed. Moreover, we obtain decay estimates in Lebesgue spaces for large time which depend on $m$.

قيم البحث

اقرأ أيضاً

In this paper we consider the initial value {problem $partial_{t} u- Delta u=f(u),$ $u(0)=u_0in exp,L^p(mathbb{R}^N),$} where $p>1$ and $f : mathbb{R}tomathbb{R}$ having an exponential growth at infinity with $f(0)=0.$ Under smallness condition on th e initial data and for nonlinearity $f$ {such that $|f(u)|sim mbox{e}^{|u|^q}$ as $|u|to infty$,} $|f(u)|sim |u|^{m}$ as $uto 0,$ $0<qleq pleq,m,;{N(m-1)over 2}geq p>1$, we show that the solution is global. Moreover, we obtain decay estimates in Lebesgue spaces for large time which depend on $m.$
In this paper we prove local well-posedness in Orlicz spaces for the biharmonic heat equation $partial_{t} u+ Delta^2 u=f(u),;t>0,;xinR^N,$ with $f(u)sim mbox{e}^{u^2}$ for large $u.$ Under smallness condition on the initial data and for exponential nonlinearity $f$ such that $f(u)sim u^m$ as $uto 0,$ $m$ integer and $N(m-1)/4geq 2$, we show that the solution is global. Moreover, we obtain a decay estimates for large time for the nonlinear biharmonic heat equation as well as for the nonlinear heat equation. Our results extend to the nonlinear polyharmonic heat equation.
Considered herein is a multi-component Novikov equation, which admits bi-Hamiltonian structure, infinitely many conserved quantities and peaked solutions. In this paper, we deduce two blow-up criteria for this system and global existence for some two -component case in $H^s$. Finally we verify that the system possesses peakons and periodic peakons.
71 - Elena Kopylova 2019
We prove global well-posedness for 3D Dirac equation with a concentrated nonlinearity.
We provide a new analysis of the Boltzmann equation with constant collision kernel in two space dimensions. The scaling-critical Lebesgue space is $L^2_{x,v}$; we prove global well-posedness and a version of scattering, assuming that the data $f_0$ i s sufficiently smooth and localized, and the $L^2_{x,v}$ norm of $f_0$ is sufficiently small. The proof relies upon a new scaling-critical bilinear spacetime estimate for the collision gain term in Boltzmanns equation, combined with a novel application of the Kaniel-Shinbrot iteration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا