ترغب بنشر مسار تعليمي؟ اضغط هنا

A dynamically-consistent nonstandard finite difference scheme for the SICA model

105   0   0.0 ( 0 )
 نشر من قبل Delfim F. M. Torres
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we derive a nonstandard finite difference scheme for the SICA (Susceptible-Infected-Chronic-AIDS) model and analyze the dynamical properties of the discretized system. We prove that the discretized model is dynamically consistent with the continuous, maintaining the essential properties of the standard SICA model, namely, the positivity and boundedness of the solutions, equilibrium points, and their local and global stability.

قيم البحث

اقرأ أيضاً

In this article, a numerical scheme is introduced for solving the fractional partial differential equation (FPDE) arising from electromagnetic waves in dielectric media (EMWDM) by using an efficient class of finite difference methods. The numerical s cheme is based on the Hermite formula. The Caputos fractional derivatives in time are discretized by a finite difference scheme of order $mathcal{O}(k^{(4-alpha)})$ & $mathcal{O}(k^{(4-beta)})$, $1<beta <alpha leq 2$. The stability and the convergence analysis of the proposed methods are given by a procedure similar to the standard von Neumann stability analysis under mild conditions. Also for FPDE, accuracy of order $mathcal{O}left( k^{(4-alpha)}+k^{(4-beta)}+h^2right) $ is investigated. Finally, several numerical experiments with different fractional-order derivatives are provided and compared with the exact solutions to illustrate the accuracy and efficiency of the scheme. A comparative numerical study is also done to demonstrate the efficiency of the proposed scheme.
In this paper, we develop a high order residual distribution (RD) method for solving steady state conservation laws in a novel Hermite weighted essentially non-oscillatory (HWENO) framework recently developed in [23]. In particular, we design a high order HWENO reconstructions for the integrals of source term and fluxes based on the point values of the solution and its spatial derivatives, and the principles of residual distribution schemes are adapted to obtain steady state solutions. The proposed novel HWENO framework enjoys two advantages. First, compared with the traditional HWENO framework, the proposed methods do not need to introduce additional auxiliary equations to update the derivatives of the unknown function, and compute them from the current value and the old spatial derivatives. This approach saves the computational storage and CPU time, which greatly improves the computational efficiency of the traditional HWENO framework. Second, compared with the traditional WENO method, reconstruction stencil of the HWENO methods becomes more compact, their boundary treatment is simpler, and the numerical errors are smaller at the same grid. Thus, it is also a compact scheme when we design the higher order accuracy, compared with that in [11] Chou and Shu proposed. Extensive numerical experiments for one and two-dimensional scalar and systems problems confirm the high order accuracy and good quality of our scheme.
There has been an arising trend of adopting deep learning methods to study partial differential equations (PDEs). In this paper, we introduce a deep recurrent framework for solving time-dependent PDEs without generating large scale data sets. We prov ide a new perspective, that is, a different type of architecture through exploring the possible connections between traditional numerical methods (such as finite difference schemes) and deep neural networks, particularly convolutional and fully-connected neural networks. Our proposed approach will show its effectiveness and efficiency in solving PDE models with an integral form, in particular, we test on one-way wave equations and system of conservation laws.
We present an efficient second-order finite difference scheme for solving the 2D sine-Gordon equation, which can inherit the discrete energy conservation for the undamped model theoretically. Due to the semi-implicit treatment for the nonlinear term, it leads to a sequence of nonlinear coupled equations. We use a linear iteration algorithm, which can solve them efficiently, and the contraction mapping property is also proven. Based on truncation errors of the numerical scheme, the convergence analysis in the discrete $l^2$-norm is investigated in detail. Moreover, we carry out various numerical simulations, such as verifications of the second order accuracy, tests of energy conservation and circular ring solitons, to demonstrate the efficiency and the robustness of the proposed scheme.
201 - Jing Sun , Weihua Deng , Daxin Nie 2021
We make the split of the integral fractional Laplacian as $(-Delta)^s u=(-Delta)(-Delta)^{s-1}u$, where $sin(0,frac{1}{2})cup(frac{1}{2},1)$. Based on this splitting, we respectively discretize the one- and two-dimensional integral fractional Laplaci an with the inhomogeneous Dirichlet boundary condition and give the corresponding truncation errors with the help of the interpolation estimate. Moreover, the suitable corrections are proposed to guarantee the convergence in solving the inhomogeneous fractional Dirichlet problem and an $mathcal{O}(h^{1+alpha-2s})$ convergence rate is obtained when the solution $uin C^{1,alpha}(bar{Omega}^{delta}_{n})$, where $n$ is the dimension of the space, $alphain(max(0,2s-1),1]$, $delta$ is a fixed positive constant, and $h$ denotes mesh size. Finally, the performed numerical experiments confirm the theoretical results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا