ﻻ يوجد ملخص باللغة العربية
In this article, a numerical scheme is introduced for solving the fractional partial differential equation (FPDE) arising from electromagnetic waves in dielectric media (EMWDM) by using an efficient class of finite difference methods. The numerical scheme is based on the Hermite formula. The Caputos fractional derivatives in time are discretized by a finite difference scheme of order $mathcal{O}(k^{(4-alpha)})$ & $mathcal{O}(k^{(4-beta)})$, $1<beta <alpha leq 2$. The stability and the convergence analysis of the proposed methods are given by a procedure similar to the standard von Neumann stability analysis under mild conditions. Also for FPDE, accuracy of order $mathcal{O}left( k^{(4-alpha)}+k^{(4-beta)}+h^2right) $ is investigated. Finally, several numerical experiments with different fractional-order derivatives are provided and compared with the exact solutions to illustrate the accuracy and efficiency of the scheme. A comparative numerical study is also done to demonstrate the efficiency of the proposed scheme.
The present article is devoting a numerical approach for solving a fractional partial differential equation (FPDE) arising from electromagnetic waves in dielectric media (EMWDM). The truncated Bernoulli and Hermite wavelets series with unknown coeffi
We propose a novel method to compute a finite difference stencil for Riesz derivative for artibitrary speed of convergence. This method is based on applying a pre-filter to the Grunwald-Letnikov type central difference stencil. The filter is obtained
In this work, new finite difference schemes are presented for dealing with the upper-convected time derivative in the context of the generalized Lie derivative. The upper-convected time derivative, which is usually encountered in the constitutive equ
In this work, we derive a nonstandard finite difference scheme for the SICA (Susceptible-Infected-Chronic-AIDS) model and analyze the dynamical properties of the discretized system. We prove that the discretized model is dynamically consistent with t
The asymptotic stable region and long-time decay rate of solutions to linear homogeneous Caputo time fractional ordinary differential equations (F-ODEs) are known to be completely determined by the eigenvalues of the coefficient matrix. Very differen